No SKYACTIV TECHNOLOGY 8 Development of the i-eloop Masayoshi Takahashi Tatsurou Takahashi Yoshimasa Kitaki Takeharu Yamashita Hir

Similar documents
No EV 26 Development of Crash Safety Performance for EV Ichiro Kamimoto Masaki Motoki Masaki Ueno SKYACTIV engine HEV Hybrid Electric Ve

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

2 1) 2) 3) 4) 5) 6) Development of Second Generation Wireless In-Wheel Motor with Dynamic Wireless Power Transfer Hiroshi Fujimoto Takuma Takeuchi Kat

パナソニック技報

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

01 23A1-W-0012.indd

TB014 Book No BC4Z004 S N 11

VI Powerpoint Template

F9222L_Datasheet.pdf

燃焼圧センサ

LM35 高精度・摂氏直読温度センサIC

LM2940

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju


OPA134/2134/4134('98.03)

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

by CASIO W61CA For Those Requiring an English/Chinese Instruction

untitled

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

Microsoft PowerPoint - datatel Presentation Wind Power Testing V01.ppt

untitled

<95DB8C9288E397C389C88A E696E6462>

パナソニック技報


Introduction Purpose This training course demonstrates the use of the High-performance Embedded Workshop (HEW), a key tool for developing software for

no15

WARNING To reduce the risk of fire or electric shock,do not expose this apparatus to rain or moisture. To avoid electrical shock, do not open the cabi

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

untitled

Microsoft PowerPoint - TMSパネル原稿(ファイナル) pptx

建設業界におけるICT施工の進展とバリューチェーン展開への取組み

LM2940.fm

橡最終原稿.PDF

音響部品アクセサリ本文(AC06)PDF (Page 16)

資料1-3

LM2940/LM2940C 1A 低ドロップアウト3 端子レギュレータ

untitled

APU win-win

LM A High Efficiency Synchronous Switching Regulator (jp)

C H H H C H H H C C CUTION:These telephones are for use in Japan only. They cannot be used in other countries because of differences in voltages, tele

橡

原稿.indd

Komatsu s Brand for New-Generation Construction and Mining Equipment Genuine Answers for Land & Environment Optimization GALEO is derived from the fol

280x540_JCW_Book_Cover

LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overa

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

+ -

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

Fig. 1. Relation between magnetron anode current and anode-cathod voltage. Fig. 2. Inverter circuit for driving a magnetron. 448 T. IEE Japan, Vol. 11

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

The hand operated type HB unit is a worm gear drive which may be used for any valve or device requiring a 90 movement. The HB worm gear actuator is es

Web-ATMによる店舗向けトータルATMサービス

< F836F A815B934B8D87955C E706466>

自動車ボディ寸法検査

Options Unit : mm Finger guards Color Model Surface treatment Nickel-chrome plating silver DC Fan 4mm Air Flo

特-7.indd

S-6.indd

Introduction Purpose This training course describes the configuration and session features of the High-performance Embedded Workshop (HEW), a key tool

WLTCの 目 的 世 界 における 典 型 的 な 走 行 条 件 を 代 表 する 全 世 界 共 通 の 軽 量 車 テストサ イクルを 策 定 すること WLTC 走 行 サイクルを 策 定 する 方 法 を 明 確 にすること WLTC 走 行 サイクルは 以 下 の 地 域 における 実

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

LM Watt Stereo Class D Audio Pwr Amp w/Stereo Headphone Amplifier (jp)

003村江.indd

取説_VE-PV11L(応用編)

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

DC-DC Control Circuit for Single Inductor Dual Output DC-DC Converter with Charge Pump (AKM AKM Kenji TAKAHASHI Hajime YOKOO Shunsuke MIWA Hiroyuki IW

kiyo5_1-masuzawa.indd

p _08森.qxd

m 1 AUV 10 m 1.3 m 1.5 m 10 tons 300 km 3,500 m 3 kn. Maximum 4 kn SSBL (, ) AUV 2,000 3,


CMT CA CMT BEMS CA AC HP 24 Building Environment and Energy Management System BEMS / HP HP HP HP 992

VHDL-AMS Department of Electrical Engineering, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan TOYOTA Motor Corporation, Susono, Shizuok

WT3000 プレシジョンパワーアナライザ ユーザーズマニュアル

ProVisionaire Control V3.0セットアップガイド

(1 ) (2 ) Table 1. Details of each bar group sheared simultaneously (major shearing unit). 208

Development and Field Test of a Portable Camera System for Long Term Observation of Natural Dam Ken AKIYAMA (Tohoku Univ.), Genki YAMAUCHI (Tohoku Uni

Airflow - Static Pressure Characteristics DC % 6% % Airflow 風量 PWM PWMDuty デューティ Cycle %

GPGPU

#表紙ドキュメントPDF書き出し用.indd

06_学術_技師の現状および将来需要_武藤様1c.indd

AFO AFO 4 2.3AFO 5 3 AFO 3.1 AFO

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

QX技報2010_No00

/ Motor Specifications Direct Motor Drive Ball Screws / Precision Ball Screw type MB / MB MB Precision Ball Screw type MB / MoBo C3 5 5 Features A 5-p


WLTCの 目 的 世 界 における 典 型 的 な 走 行 条 件 を 代 表 する 全 世 界 共 通 の 軽 量 車 テストサ イクルを 策 定 すること WLTC 走 行 サイクルを 策 定 する 方 法 を 明 確 にすること WLTC 走 行 サイクルは 以 下 の 地 域 における 実

: , , % ,299 9, , % ,

TOS7200 CD-ROM DUT PC 1.0X p.15 NEMA Vac/10 A [85-AA-0003] m : CEE7/7 : 250Vac/10 A [85-AA-0005] : GB1002 : 250Vac/10A [ ] 2016

untitled

スプレッド・オプション評価公式を用いた裁定取引の可能性―電力市場のケース― 藤原 浩一,新関 三希代


2017 (413812)

Vol.53 No (July 2012) EV ITS 1,a) , EV 1 EV ITS EV ITS EV EV EV Development and Evaluation of ITS Information Commu

造船現場におけるAR技術を活用した配管管理工数の削減

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

I N S T R U M E N T A T I O N & E L E C T R I C A L E Q U I P M E N T STW Symbol Symbol otary switch) 05 otary switch Symbol angle of notch 181


Transcription:

No.302012 SKYACTIV TECHNOLOGY 8 Development of the i-eloop 1 2 3 Masayoshi Takahashi Tatsurou Takahashi Yoshimasa Kitaki 4 5 6 Takeharu Yamashita Hiroyuki Kitagawa Seiyo Hirano Zoom-Zoom Fig.1 SKYACTIV TECHNOLOGY Fig.1 Building Block Strategy CO2STEP2 i-eloop Intelligent Energy LOOP STEP2 i-eloop Summary Based on the Sustainable Zoom-Zoom plan, Mazda s long-term vision for technology development, we have been advancing what is called a Building Block Strategy. With use of a new-generation technology called SKYACTIV TECHNOLOGY, we intend to thoroughly improve Mazda s base technologies with an eye to improving the powertrain efficiency, reducing the vehicle weight, and eventually combining them with electric device technologies in a phased manner so as to reduce total CO2 emissions. As the second step of this approach, Mazda has developed a new regenerative braking system called i-eloop, where the energy generated during deceleration is recovered and reused as electric energy necessary for a vehicle to move. This paper introduces the i-eloop, a regenerative braking technology developed as the second step of the Building Block Strategy. Fig.2 i-eloop Fig.2 5. 3. 4. 15 *6 Vehicle system Development Dept. Powertrain System Development Dept. 37

マツダ技報 にするコンセプトの i-eloop の開発となった No.30 2012 2.2 i-eloop システムのブレークスルー技術 このシステムは 回生する ためる 使う 効率的に減速エネルギを回生し 回生したエネルギを素 の3要素からなっており 特に 回生する ためる 早く蓄え 蓄えた電気を素早く 効率的に使用するシステ では 減速時の短時間で いかに減速エネルギを効率よく ムを構築するため 下記の 2 項目をブレークスルー技術 回収するかが開発のポイントとなる Fig.5 として開発した 高電圧化によりエネルギを効率的に回生する 12V Energy efficiency world one 25V 可変電圧式の減速エネルギ回生用オルタネータを 1.Improving the efficiency of the engine 2.Use of the high efficiency aria of the engine 採用(Fig.6) 3.Work load reduction of the engine Generator load reduction 4.The engine-free time fuel cut Fuel cut time extention 回生したエネルギを瞬時に溜める低抵抗大容量電気二 重層キャパシタを採用 Fig.7 5.Disposal energy reduction or reuse Celebrate Driving i-eloop Regeneration system dev. To collect energy at accelerator OFF time. To use the energy in accelerator ON. Insatiate challenge Fig.2 Improvement Items of Energy Efficiency Vs i-eloop Breakthrough 2. システム説明 2.1 主要機能説明 レイアウト To take in electricity effectively 減速エネルギを回生する機能は パルス幅コントロール により励磁電流を制御した最大 25V 発電の可変電圧オルタ Environment Performance ネータに持たせた 回生したエネルギを溜める機能は 主 Fig.5 Bureak Through Image に電気二重層キャパシタ 以下 EDLC Electric Double Layer Capacitor に持たせている 瞬時に大きなエネル ギを溜めるため 低抵抗で大容量の EDLC をキャパシタ サプライヤと開発した Fig.3 4 Regenerate 12-25V Generator for Regeneration Consume Store EDLC DC-DC Converter Long lived battery Vehicle electrical loads Current sensor 25V 14V - Engine electronics - HVAC - Head lamp - Rear defogger. i-stop Battery Fig.6 12V-25V Generator for Regeneration PCM CAN Fig.3 System Diagram 12-25V Generator for Regeneration Fig.7 EDLC DC-DC Converter EDLC Fig.4 Layout 38

No.302012 KL line Sig.1 Sig.2 PCM Generator DCDC Fig.8 System Fig.8 EDLC DC-DC EDLC i-stop EDLC PCM(Power train Control Module) EDLC PCM DC-DC i-eloop PCM Fig.8 KL () i-stop PCM DC-DC Fig.8 Sig1Sig2( ) DC-DC PCM ON i-eloop 10 NEDC Fig.9 1 39

No.302012 Base vehicle total consumption Quantity of energy Breaks system Target deacceleration Mech resi. Vehicle Aire drag, rolling resin.etc.. Climatecont Comprasor Vehicle weight Mech resi. PT EngT/MDrive T/M system The energy required amount in mode The mileage improvemen t targeted value E.g.. CD NEDC abut 270350KJ input process Among mode Braking time Breaking E.g.. CD NEDC about2030kj Room of de acceleration in Total regeneration energy decision Total regeneration energy decision Capacitor capability Generator available current At the time of deacceleration PT resistance in mode de acceleration torque cont. amount individual spec Map of shift in de Lock up time AT Lock up amount (AT Map decision OUTPUT DCDC output power Battery capability Fig.9 Relation for Spec Vehicle speed Fig.10 JC08 Speed Pattern 25 25 25 i-eloop 1 E= Q dv Q=CV E=CV dv=cv 2 2 i-eloop 14 14 14 C113F 120F JC08Fig.10JC08 1 10 ON 20 t 1 200A 80 38.7 QCV 200t120 25-14 t6.6sec 15 20A 40A 40A 45 13.5V 40A 45 24.3kJ EDLC 25.7kJ C 1 E 24.3kJ Q E Q C 40

No.302012 Vehicle speed Capacitor voltage Fig.11 Test Data of USA 405Freeway (Ex. Scene A) A Fig.11 A USA405 5 80km/h 120km/h A Fig.12 Vs 15A 35 3040A A 10 B Fig.13 Vs Fig.12 3040A B 5 % 12 10 8 6 4 2 0 0 5 10 15 20 25 30 35 40 45 50 A 12 % Fig.12 Fuel Economy Ratio Vs Current Image 10 8 6 4 2 0 0 5 10 15 20 25 30 35 40 45 50 Fig.13 Fuel Economy Ratio Vs Current image NEDC Fig.14 CD 1624A Fig.15 Cool-MID 23A 40A 41

No.302012 10 B 5 100% 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Audio(CD/MD&Radio) Blower Motor Heat-Max High-mount Brake light Brake light(led) Meter Transmission cont(at) Fuel pump Engine cont Fig.14 Basic Current for EU Image Blower Motor Heat-Mid Blower Motor Cool-Mid Blower Motor Cool-Max Fan Motor 30 Fan Motor (45MAX) Rear Window Defroster Seat Warmer Fig.15 General Current Image Headlight Low TNS Wiper Low i-eloop i-eloop Fig.16 Fig.17 2 i-eloop (System name) Always disp Fig16 EDLC Fig17 EDLC EDLC EDLC EDLC 25.7KJ 2 INFO DC-DC i-eloop Zoom-Zoom Charge amount for EDLC Energy direction Regeneration power Fig.16 i-eloop Disp.1 Fig.17 i-eloop Disp.2 OFF 42