数学概論I

Similar documents
π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

研修コーナー

パーキンソン病治療ガイドライン2002

日本内科学会雑誌第102巻第4号

1 I

第90回日本感染症学会学術講演会抄録(I)

Ł\”ƒ-2005

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2


n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

² ² ² ²

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

tnbp59-21_Web:P2/ky132379509610002944

日本内科学会雑誌第97巻第7号


日本内科学会雑誌第98巻第4号

抄録/抄録1    (1)V

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

2007年08月号 022416/0812 会告

ε

日本内科学会雑誌第96巻第7号

27

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

snkp-14-2/ky347084220200019175

第86回日本感染症学会総会学術集会後抄録(I)

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

2010 IA ε-n I 1, 2, 3, 4, 5, 6, 7, 8, ε-n 1 ε-n ε-n? {a n } n=1 1 {a n } n=1 a a {a n } n=1 ε ε N N n a n a < ε

JSP58-program




本文/扉1

プログラム


平成20年5月 協会創立50年の歩み 海の安全と環境保全を目指して 友國八郎 海上保安庁 長官 岩崎貞二 日本船主協会 会長 前川弘幸 JF全国漁業協同組合連合会 代表理事会長 服部郁弘 日本船長協会 会長 森本靖之 日本船舶機関士協会 会長 大内博文 航海訓練所 練習船船長 竹本孝弘 第二管区海上保安本部長 梅田宜弘

Program

aphp37-11_プロ1/ky869543540410005590


Œ{Ł¶/1ŒÊ −ªfiª„¾ [ 1…y†[…W ]

日本内科学会雑誌第96巻第11号

untitled


( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a

Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n




本文/目次(裏白)

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

u u u 1 1


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

³ÎΨÏÀ

newmain.dvi

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í


春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

プログラム

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

ID POS F

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

DVIOUT-fujin

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Chap9.dvi

Lecture 12. Properties of Expanders

.1 1,... ( )

Z: Q: R: C: sin 6 5 ζ a, b

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

3/4/8:9 { } { } β β β α β α β β


1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp


Part () () Γ Part ,

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B


y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

chap1.dvi

201711grade1ouyou.pdf

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

Transcription:

{a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1

a n := ( 1) n ( n =1, 2,...). ( 1 n a n := n n 2

{a n } M >0 s.t. a n 5 M for n =1, 2,... {a n } a 1 5 a 2 5 5 a n 5 3

{a n } A {a n } A α := sup A α = sup a n n=1 (1) a n 5 α for n (2) ε > 0 α ε A N s.t. α ε < a N. {a n } n > N a n = a N α ε < a N 5 a n 5 α < α + ε a n α <ε for n > N 4

5

a 1 := n 1.4, a 2 := 1.41, a 3 := 1.414, a 4 := 1.4142, a n := max x = m o 10 n ; m N, x2 5 2 ( ) {a n } α a 2 n 5 2( n) α 2 5 2 b n := a n + 1 10n lim n b n = lim n a n = α a n ( ) b 2 n > 2( n) α 2 = lim n b2 n = 2 α 2 =2 α = a 1 > 0 α = 2 a n 6

r R ε > 0, q Q s.t. r q <ε r ε> 0 1 10n <ε n N r 10 n a n a n Q 0 <r a n < 1 10 n <ε. a n := µ 1+ 1 n n (n =1, 2,...) 7

a n = = = 5 < nx µ n 1 k n k=0 k nx n(n 1) (n k + 1) 1 k! n k=0 k nx µ 1 1 1 µ 1 k 1 ( ) k! n n k=0 nx µ 1 1 1 µ 1 k 1 k! n +1 n +1 k=0 n+1 X µ 1 1 1 µ 1 k 1 = a k! n +1 n +1 n+1 k=0 8

n P 1 ( ) a n 5 k=0 k! k = 2 k! = 1 2 k = 1 2 2 = 2 k 1 1 1 2 n 1 1 nx 1 a n 5 1+1+ 2 k=2 k 1 = 1 + 1 + 2 1 1 < 3. 2 {a n } µ lim 1+ 1 n = e n n 9

{a n } n +1 1, 1+ 1 n, 1+1 n,..., 1+1 n 1+n 1+ 1 n = n +2 n +1 n +1 = 1 + 1 n +1 r1 n+1 1+ n 1 n 1+ 1 r n +1 n+1 1 1+ 1 n n n +1 1+ 1 n+1 > 1+ 1 n n +1 n 10

a 1 >b 1 > 0, a n+1 := 1 2 (a n + b n ), b n+1 := a n b n a 1 >a 2 > >a n >b n > >b 2 >b 1 b n a n t b 1 b 2 b 3 a 3 a 2 a 1 (1) a 1 >b 1 a k >b k a k+1 b k+1 = 1 2 (a k + b k ) p a k b k = 1 2 ( a k p b k ) 2 > 0. n a n >b n (2) a n+1 = 1 2 (a n + b n ) < 1 2 (a n + a n )=a n, b n+1 = p a n b n > p b n b n = b n. 11

a 1 >b 1 > 0, a n+1 := 1 2 (a n + b n ), b n+1 := a n b n a 1 >a 2 > >a n >b n > >b 2 >b 1 {a n } {b n } α = lim n a n, β = lim n b n. n α = 1 2 (α + β) α = β lim n a n = lim n b n a 1,b 1 12

I n =[a n,b n ](n =1, 2,...) (1) I 1 I 2 I n (2) I n := b n a n 0(n ) T = 1 α s.t. I n = {α} n=1 (1) a 1 5 a 2 5 5 a n 5 b n 5 5 b 2 5 b 1 {a n } {b n } α = lim n a n, β = lim n b n (2) β α = lim n (b n a n )=0 β = α a n 5 α = β 5 b n ( n) α I n ( n) α T I n α b n t t t t t α 0 a n α α 00 n=1 13

(1) Dedekind (2) (3) (4) (1) Dedekind 14

{a n } b n := sup a p p=n b 1 := sup{a 1,a 2,a 3,...}, b 2 := sup{a 2,a 3,...},... b 1 = b 2 = = b n = {b n } lim sup a n lim n n a n c n := inf a p p=n c 1 5 c 2 5 5 c n 5 {c n } lim inf n a n lim a n n 15

λ := lim sup a n = lim n n sup a p = inf sup a p, p=n n=1 p=n b 1 = b 2 = = b n λ b n := sup a p p=n ε> 0 given (1) N s.t. n > N = λ 5 b n <λ + ε n > N a n 5 b n <λ + ε (2) p n = p s.t. λ ε 5 b p ε < a n p n λ ε < a n (1), (2) (3) λ {a n } {a nk } λ < λ 0 λ 0 t λ ε λ λ+ε λ 0 t 16

µ := lim inf n a n = lim n inf p=n a p = sup n=1 inf a p, p=n c n := inf p=n a p c 1 5 c 2 5 5 c n µ ε> 0 given (1) N s.t. n > N = µ ε < c n 5 µ n > N µ ε < c n 5 a n (2) p n = p s.t. a n <c p + ε 5 µ + ε p n a n <µ+ ε (1), (2) (3) µ {a n } {a nk } µ 0 <µ µ 0 µ 0 µ ε µ µ+ε t t 17

lim sup, lim inf (1) {a n } lim sup n a n :=. (2) {a n } lim inf n a n :=. ± lim sup n a n lim inf n a n lim sup n a n = a n = n (n =1, 2,...) lim inf n a n = 18

(1) a n := ( 1) n + 1 n lim sup a n =1, n 1+ ( 1)m m (2) a n = ( 1) m m lim sup a n =1, n lim inf n a n = 1. (n =2m) (n =2m 1) lim inf n a n =0. (3) a n := ( 1) n n lim sup n a n =, lim inf n a n =. 19

{a n }, {b n } (1) lim sup (a n + b n ) 5 lim sup a n + lim sup b n n n n (2) lim inf n (a n + b n ) = lim inf n a n + lim inf n b n (1) α := lim sup a n, β = lim sup b n n n ε > 0 given N s.t. n > N a n <α + ε, b n <β + ε. a n + b n <α + β +2ε ( n > N) n > N sup(a p + b p ) 5 α + β +2ε p=n lim sup n (a n + b n ) = inf sup n=1 p=n ε> 0 (1) (2) (a p + b p ) 5 α + β +2ε 20

(1) a n =( 1) n, b n =( 1) n+1 (2) {a n }, {b n } (3) ε a, b R given. ε > 0 a 5 b + ε a 5 b a > b ε = 1 2 (a b) a 5 b + ε a 5 1 2 (a + b) 21

{a n } {a n } lim sup n a n = lim inf n a n [= ] lim n a n = α ε > 0 given N s.t. α ε < a n <α + ε for ( n = N) n = N α ε 5 sup a p 5 α + ε, p=n α ε 5 inf p=n a p 5 α ε. lim sup n a n = lim inf n a n = α 22

{a n } {a n } lim sup n a n = lim inf n a n [ = ] lim sup a n = lim inf n n a n = α ε > 0 given. N s.t. a n <α + ε for n > N N N s.t. α ε < a n for n > N α ε < a n <α + ε lim n a n = α 23