1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

Similar documents
1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

日本内科学会雑誌第102巻第4号

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x



III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

プログラム

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Gmech08.dvi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

2011de.dvi

Lecture 12. Properties of Expanders

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

本文/目次(裏白)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

°ÌÁê¿ô³ØII

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [


, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,


24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x



koji07-01.dvi


1 I

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

Untitled


85 4

第86回日本感染症学会総会学術集会後抄録(I)

2000年度『数学展望 I』講義録

December 28, 2018


x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

Dynkin Serre Weyl


Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp


1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

Ł\”ƒ-2005


O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

7-12.dvi

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

数学Ⅱ演習(足助・09夏)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

第90回日本感染症学会学術講演会抄録(I)

mugensho.dvi

ohp_06nov_tohoku.dvi

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

Z: Q: R: C:

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

Part () () Γ Part ,

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

201711grade1ouyou.pdf

Gmech08.dvi

A

B ver B

Chap11.dvi

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

Transcription:

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x X f(x) = a A x f 1 (A) f 1 (A) = X y Y f f(x) = y x X X = f 1 (A) x f 1 (A) y = f(x) A A = Y Q.E.D

1.5 f : X Y X f(x) ( ) f : X Y g : X f(x) g(x) = f(x) (x X) g O f(x) O = U f(x) Y U x g 1 (O) g(x) O = U f(x) f(x) O = U f(x) f(x) U x f 1 (U) g 1 (O) = f 1 (U) f : X Y f 1 (U) X g : f(x) 1.4 f(x) Q.E.D 1.6 f : X Y X Y ( ) f f f 1 1.4 X Y Q.E.D 1.7 Y X Y = X Y X ( ) A X A = A = Y A A a A A a Y = X a X a Y A Y a Y a N N Y A X A Y Y Y A Y = A Y = Y A Y A Y = Y = Y A = Y A A A = A X = Y A = A X A = X Q.E.D

1.8 X Y, Z Z Y Z Z Y Z Z ( ) Z Y Z X Z X Z Y Z Z Y Z Y = Z Y Y Z Z Y = Z Y = Y 1.7 Y Q.E.D A = (x, sin( π )) R 0 < x < 1}, B = (0, y) 1 < y < 1}, X = A B x X ϕ : (0, 1) A ϕ(x) = (x, sin( π )) ϕ (0, 1) x A B [ 1, 1] B A = X X X A, B A B = A B X = R, A = (0, 1), B = (1, ) A B = 1} A, B

1.9 X X F = F λ λ Λ} (1)X = λ Λ F λ () F λ (3) F X ( ) X A λ Λ F λ A F λ () F λ A = F λ A = F λ (i) λ Λ F λ A = A = A X = A ( λ Λ F λ ) = (A F λ ) λ Λ = = λ Λ (ii)f λ0 A = F λ λ 0 Λ F λ0 A (3) λ Λ F λ F λ0 F λ A = F λ A = F λ F λ A = F λ X\A F λ0 A F λ F λ0 (X\A) A A X\A X\A = X\A A A = A = F λ F λ0 (X\A) A = (X\A) A = λ Λ F λ A = F λ F λ A (1) X = λ Λ F λ A X A = X Q.E.D

1.10 X Y X Y X Y ( ) = P X : X Y X X X Y 1.4 X Y = y Y x X X y} X X} Y Y X y} x} Y X Y (x, y) Z(x, y) = (X y}) (x} Y ) (x, y) (X y}) (x} Y ) (X y}) (x} Y ) X y} x} Y 1.9 Z(x, y) X Y = (x,y) X Y Z(x, y) Z(x, y) Z(x, y ) X Y (x, y ), (x, y)} Z(x, y) Z(x, y ) Z(x, y) Z(x, y ) Q.E.D X X X C X (1)C ()C C C C = C 1 X X X R\S 0 = (, 1) ( 1, 1) (1, ) 3 n 1 R n+1 \S n = x R n+1 ; x > 1} x R n+1 ; x > 1}

1.11 X ( ) C C C C C C = C C, D C D = C D C D 1.9 C C D C = C D D C D C C = D Q.E.D

X (path) [0, 1] X γ : [0, 1] X γ(0) γ (beginning point) γ(1) γ (end point) γ γ(0) γ(1) [0, 1] I X X x, y x y X (path-connected space).1 ( ) X A X A A = X A X A A a A X b X b / A b X γ : [0, 1] X γ(0) = a, γ(1) = b γ 1 (A) [0, 1] γ(0) = a A 0 γ 1 (A) γ 1 (A) γ(1) = b / A 1 / γ 1 (A) γ 1 (A) [0, 1] [0, 1] Q.E.D R n C (convex set) C x, y x y C x, y C (1 t)x + ty C (0 t 1) C 1 S r (x) R n 3 R n

S r (x) R n S r (x) = y R n ni=1 (x i y i ) < r} u, v S r (x) 0 t 1 p = (1 t)u + tv u, v S r (x) d(u, x) = u x < r, d(v, x) = v x < r p S r (x) d(p, x) = n (p i x i ) i=1 = p x = (1 t)u + tv x = (1 t)(u x) + t(v x) (1 t)(u x) + t(v x) = (1 t) u x +t v x < (1 t)r + tr = r. X I = [0, 1] γ : I X γ 1 : I X γ 1 (t) = γ(1 t) (0 t 1) γ 1 ( ) ϕ : I I ϕ(t) = 1 t (0 t 1) ϕ γ 1 = γϕ γ 1 I X Q.E.D.3 α : I X, β : I X α(1) = β(0) αβ : I X α(t) (0 t 1 (αβ)(t) = ) β(t 1) ( 1 t 1) αβ

.4 X X x, y x y x y ( ) (1) γ : I X γ(t) = x (t I) γ x x path x x () x y x y pathγ : I X γ(0) = x, γ(1) = y γ 1 : I X γ 1 (t) = γ(1 t) (t I) γ 1 (0) = γ(1 0) = γ(1) = y γ 1 (1) = γ(1 1) = γ(0) = x γ 1 y x path y x (3) x y y z path α : I X, β : I X α(0) = x, α(1) = y β(0) = y, β(1) = z α(1) = y = β(0).3 αβ : I X path (αβ)(t) = α(t) (0 t 1 ) β(t 1) ( 1 t 1) (αβ)(0) = α(0) = x (αβ)(1) = β(1) = z αβ x z path x z Q.E.D

.5(Glueing Lemma) X, Y A, B X f : A X, g : B X f g : A B X (f g)(x) = f(x) (x A) g(x) (x B) (1)A, B A B f, g f g ()A, B A B f, g f g ( ) (1) () Y O (f g) 1 (O) A B x A x B (f g)(x) = f(x) O (f g)(x) = g(x) O x (f g) 1 (O) (f g)(x) O x f 1 (O) g 1 (O) (f g) 1 (O) = f 1 (O) g 1 (O) f f 1 (O) A A A B f 1 (O) A B g 1 (O) A B (f g) 1 (O) A B Q.E.D.6 f : X Y X f(x) ( ) x, y f(x) x = f(x ), y = f(y ) X x, y X γ(0) = x, γ(1) = y pathγ : I X fγ : I Y (fγ)(0) = f(γ(0)) = f(x ) = x (fγ)(1) = f(γ(1)) = f(y ) = y fγ x y path Q.E.D

.7 X( ), Y ( ) X Y X Y ( ) = (x, y), (x, y ) X Y Y y, y Y α(0) = y, α(1) = y α : I Y α : I X Y α(t) = (x, α(t)) (t I) α ( ) X α(0) = (x, α(0)) = (x, y) α(1) = (x, α(1)) = (x, y ) β(0) = x, β(1) = x β : I X β : I X Y β(t) = (β(t), y ) (t I) β ( ) β(0) = (β(0), y ) = (x, y ) β(1) = (β(1), y ) = (x, y ) (x, y) (x, y ), (x, y ) (x, y ) (x, y) (x, y ) = P X : X Y X P Y : X Y Y.6 Q.E.D ( ) P X α : I X (P X α)(t) = P X ( α(t)) = P X (x, α(t)) = x P X α P Y α : I Y (P Y α)(t) = P Y ( α(t)) = P Y (x, α(t)) = α(t) P Y α = α α f : W X Y P X f P Y α Q.E.D

.8 R n X X ( ) x X U(x) = y X x y} U(x) = X (1) U(x) z U(x) X x X ε S ε (x) X S ε (x) w α : I S ε (x) α(t) = (1 t)w + tz (0 t 1) α(0) = w, α(1) = z α(t) S ε (x) d(α(t), z) = α(t) z = (1 t)w + tz z = (1 t)(w z) = (1 t) w z = (1 t)d(w, z) z U(x) β : I X β(0) = x, β(1) = z βα 1 x w w U(x) S ε (x) U(x) U(x) () U(x) X\U(x) = U(w) w X\U(x) U(w) X\U(x) U(x) (3) X = U(x) x U(x) U(x) U(x) X X U(x) = X Q.E.D

3 X, Y f : X Y, g : X Y (homotopic) F : X I Y F (x, 0) = f(x), F (x, 1) = g(x) (x X) f g F f g (homotopy) F : f g X, Y A X f : X Y, g : X Y A (relative homotopic) f(x) = g(x) (x A) F : X I Y F (x, 0) = f(x), F (x, 1) = g(x) (x X) F (x, t) = f(x) = g(x) (x A, t I) f g rel A F f g A F : f g rel A A = f g f g rel A 1 f : I R f(x) = (cos (πx), sin (πx)) (x I) g : I R g(t) = (0, 0) (t I) F : I I R F (x, t) = ((1 t) cos πx, (1 t) sin πx) (x, t I) F f g ( ) X C R n X C f : X C, g : X C f g F : X I C F (x, t) = (1 t)f(x) + tg(x) (x X, t I) f(x), g(x) C C F (x, t) = (1 t)f(x) + tg(x) C F (x, 0) = f(x) F (x, 1) = g(x) (x X) F ( ) F : f g

3.1 X, Y Map(X, Y ) X Y Map(X, Y ) Map(X, Y ) f, g Map(X, Y ) f g ( ) (1) F : X I Y F (x, t) = f(x) (x X, t I) O Y F 1 (O) = (x, t) X I F (x, t) O} = (x, t) X I f(x) O} = (x, t) X I x f 1 (O)} F 1 (O) = f 1 (O) I f 1 (O) X F 1 (0) X I () f g F : X I Y F (x, 0) = f(x), F (x, 1) = g(x) G : X I Y G(x, t) = F (x, 1 t) (x X, t I) G(x, 0) = F (x, 1 0) = g(x) G(x, 1) = F (x, 1 1) = f(x) ϕ : I I ϕ(t) = 1 t (t I) ϕ 1 X X F (1 X ϕ)(x, t) = F (1 X ϕ(x, t)) = F (1 X (x), ϕ(t)) = F (x, 1 t) = G(x, t) G g f (3) f g, g h F, G : X I Y F (x, 0) = f(x), F (x, 1) = g(x) G(x, 0) = g(x), G(x, 1) = h(x) H : X I Y H(x, t) = F (x, t) (0 t 1 ) G(x, t 1) ( 1 t 1) t = 1 1 1 F (x, ) = g(x) = G(x, 1) H well-defined H(x, 0) = f(x), H(x, 1) = g(x) (x X) Glueing Lemma H f h Q.E.D

3.

4 X α, β : I X α(1) = β(0) α β α β : I X (α β)(s) = α(s) (0 s 1 ) β(s 1) ( 1 s 1) X p X X α : I X α(0) = α(1) = p α p (basic point) X loop p X loop Ω(p) = α : I X α α(0) = α(1) = p} 4.1 Ω(p) 0, 1} Ω(p) α, β Ω(p) α β rel 0, 1} ( ) ( ) α Ω(p) x α α = β Ω(p) α β rel 0, 1}} p X loop Π 1 (X, p) = α α Ω(p)} 4. Π 1 (X, p) ( ) 4.3 4.6

4.3 α, β Π 1 (X, p) α β = α β welldefined ( ) α = α β = β = α β = α β α α rel 0, 1} β β rel 0, 1} F : I I X, G : I I X H : I I X F (s, 0) = α(s) F (s, 1) = α (s) F (0, t) = α(0) = α (0) = p F (1, t) = α(1) = α (1) = p (s I, t I) G(s, 0) = β(s) G(s, 1) = β (s) G(0, t) = β(0) = β (0) = p G(1, t) = β(1) = β (1) = p (s I, t I) H(s, t) = F (s, t) (0 s 1 ) G(s 1, t) ( 1 s 1) s = 1 1 1 F (, t) = p = G( 1, t) H well-defined φ : [0, 1 ] [0, 1], φ(s) = s G ψ H(s, t) = F (s, t) = F (φ(s), 1 x (t)) = F ((φ 1 X )(s, t)) = F (φ 1 X )(s, t) F (φ 1X )(s, t) (0 s 1 ) G (ψ 1 X )(s, t) ( 1 s 1) F (s, 0) = α(s) (0 s 1 H(s, 0) = ) } G(s 1, 0) = α(s 1) ( 1 s 1) = (α β)(s) F (s, 1) = α H(s, 1) = (s) (0 s 1) } G(s 1, 1) = α (s 1) ( 1 s 1) = (α β )(s) H(0, t) = F (0, t) = α(0) = α (0) = p H(1, t) = G(1, t) = β(1) = β (1) = p 1 } I I I H Glueing Lemma H : α β α β rel 0, 1} α β = α β Q.E.D

4.4 ( ) X α, β, γ α(1) = β(0), β(1) = γ(0) (α β) γ α(β γ) rel 0, 1} α(4s) (0 s 1) 4 ((α β) γ)(s) = β(4s 1) ( 1 4 s 1) γ(s 1) ( 1 s 1) α(s) (0 s 1) (α (β γ))(s) = β(4s ) ( 1 s 3) 4 γ(4s 3) ( 3 s 1) 4 ( ) F : I I X F (s, t) = α( s β( γ( t+1 4 t+1 s 4 1 4 s t+ 4 1 t+ 4 ) = α( 4s t+1 ) (0 s t+1 4 ) ) = β(4s t 1) ( t+1 4 s t+ 4 ) ) = γ( 4s t t ) ( t+ 4 s 1) F t I F (0, t) = α(0), F (1, t) = β(1) (α β) γ α(β γ) rel 0, 1} Q.E.D ( ) α, β, γ Π 1 (X, p) ( α β ) γ = α β γ = (α β) γ = α (β γ) = α β γ = α ( β γ ) ( α β ) γ = α ( β γ Q.E.D

4.5 ( ) X α : I X α(0) = x, α(1) = y e x α α rel 0, 1}, α e y α rel 0, 1} e z : I X, e z (s) = z (s I) e p : I X e p (s) = p e p Π 1 (X, p) ( ) F : I I X x (0 s t F (s, t) = ) α( s t ) = α( s t) 1 t t ( t s 1) F ( ) F (s, 0) = α(s) F (s, 1) = (e x α)(s) F (0, t) = x F (1, t) = α(1) (s I, t I) α e x α rel 0, 1} Q.E.D 4.6 ( ) X α : I X α(0) = x, α(1) = y α α 1 e x rel 0, 1}, α 1 α e y rel 0, 1} α 1 : I X, α 1 (s) = α(1 s) (s I) α 1 = α 1 α ( ) F : I I X α(s) (0 s t ) F (s, t) = α(t) ( t s 1 t ) α 1 (s 1) (1 t s 1) F ( ) F (s, 0) = α(0) = x = e x (s) F (s, 1) = (α α 1 )(s) F (0, t) = α(0) = x F (1, t) = α 1 (1) = x (s I, t I) e x α α 1 rel 0, 1} Q.E.D