Microsoft PowerPoint - 要因解析概要ペーパー( ホームページ用)

Similar documents
<4D F736F F D20938C8B9E945F91E58CE393A190E690B62E646F6378>

東京電力原発事故による 「みやぎの農畜産物」への 影響とその対策

目 的 大豆は他作物と比較して カドミウムを吸収しやすい作物であることから 米のカドミウム濃度が相対的に高いと判断される地域では 大豆のカドミウム濃度も高くなることが予想されます 現在 大豆中のカドミウムに関する食品衛生法の規格基準は設定されていませんが 食品を経由したカドミウムの摂取量を可能な限り

南相馬市における玄米の基準値超過の発生要因調査 平成 27 年 5 月 26 日 農林水産省福島県東北農業研究センター農業環境技術研究所

<4D F736F F F696E74202D2095FA8ECB90FC88C091538AC7979D8A7789EF F365F F92CB B8CDD8AB B83685D>

福島県の全量全袋検査の取組みについて(0120ver)

土壌から作物への放射性物質の移行(塚田祥文)

<82BD82A294EC82C697CE94EC82CC B835796DA>

学んで、考えてみよう 除染・放射線のこと 使い方

<4D F736F F D DA18CE382CC A835E838A F95FB906A89FC92E888C BD A2E646F63>

コシヒカリの上手な施肥

取組の詳細 作期の異なる品種導入による作期分散 記載例 品種名や収穫時期等について 26 年度に比べ作期が分散することが確認できるよう記載 主食用米について 新たに導入する品種 継続使用する品種全てを記載 26 年度と 27 年度の品種ごとの作付面積を記載し 下に合計作付面積を記載 ( 行が足りない

<4D F736F F F696E74202D208E9197BF C F926E93798FEB8B7A8EFB8CB9>

スライド 1

1 海水 (1) 平成 30 年 2 月の放射性セシウム 海水の放射性セシウム濃度 (Cs )(BqL) 平成 30 年 平成 29 年 4 月 ~ 平成 30 年 1 月 平成 25 ~28 年度 ~0.073 ~ ~0.


降下物中の 放射性物質 セシウムとヨウ素の降下量 福島県の経時変化 単位 MBq/km2/月 福島県双葉郡 I-131 Cs Cs-137 3 8,000,000 環境モニタリング 6,000,000 4,000,000 2,000,000 0 震災の影響等により 測定時期が2011年7

水質

平成 26 年度補正予算 :200 億円 1

スライド 1

PC農法研究会

水質

森林の放射性セシウム分布の現状と今後の見通し 国立研究開発法人森林研究 整備機構 森林総合研究所三浦覚 平成 30 年 11 月 17 日平成 30 年度 福島の森林 林業再生に向けたシンポジウム 1 本日の内容 放射性セシウム分布の現状 1) 7 年間の推移と現状 2) 木材の汚染 3) 野生の山

中央環境審議会廃棄物・リサイクル部会(第49回)

Microsoft Word - 2-1

<4D F736F F D C8B9E945F91E58EAE90B682B282DD94EC97BF89BB2E646F63>

窒素吸収量 (kg/10a) 目標窒素吸収量 土壌由来窒素吸収量 肥料由来 0 5/15 5/30 6/14 6/29 7/14 7/29 8/13 8/28 9/12 9/ 生育時期 ( 月日 ) 図 -1 あきたこまちの目標収量確保するための理想的窒素吸収パターン (

平成 27 年 9 月埼玉県東松山環境管理事務所 東松山工業団地における土壌 地下水汚染 平成 23~25 年度地下水モニタリングの結果について 要旨県が平成 20 年度から 23 年度まで東松山工業団地 ( 新郷公園及びその周辺 ) で実施した調査で確認された土壌 地下水汚染 ( 揮発性有機化合物

<4D F736F F D F5F8F4390B3816A95788E6D8CDC8CCE82CC90858EBF8AC28BAB82CC95CF89BB8F4390B B7924A90EC816A2E646F63>

研究成果報告書

ふくしまからはじめよう 農業技術情報 ( 第 39 号 ) 平成 25 年 4 月 22 日 カリウム濃度の高い牧草の利用技術 1 牧草のカリウム含量の変化について 2 乳用牛の飼養管理について 3 肉用牛の飼養管理について 福島県農林水産部 牧草の放射性セシウムの吸収抑制対策として 早春および刈取

140221_葉ネギマニュアル案.pptx

タイトル

資 料 食品中の放射性物質の最近の検出状況 平成 30 年 10 月 消費者庁食品安全委員会厚生労働省農林水産省 目次 1 農林水産物の放射性物質対策 2~ 8 2 検査の仕組み 9~15 3 検査の結果 16~25 1

圃場試験場所 : 県農業研究センター 作物残留試験 ( C-N ) 圃場試験明細書 1/6 圃場試験明細書 1. 分析対象物質 およびその代謝物 2. 被験物質 (1) 名称 液剤 (2) 有効成分名および含有率 :10% (3) ロット番号 ABC 試験作物名オクラ品種名アーリーファ

Microsoft PowerPoint - (資料3)G7向け資料rev19.pptx

チャレンシ<3099>生こ<3099>みタ<3099>イエット2013.indd

2009年度業績発表会(南陽)

untitled

140221_ミツバマニュアル案.pptx

土壌溶出量試験(簡易分析)

(3) イオン交換水を 5,000rpm で 5 分間遠心分離し 上澄み液 50μL をバッキングフィルム上で 滴下 乾燥し 上澄み液バックグラウンドターゲットを作製した (4) イオン交換水に 標準土壌 (GBW:Tibet Soil) を既知量加え 十分混合し 土壌混合溶液を作製した (5) 土

PowerPoint プレゼンテーション

飯舘村におけるホールボディカウンタ結果解析 ( 平成 年度施行分 ) 福島県立医科大学放射線健康管理学講座助手 宮崎真 Ver /03/04

新技術説明会 様式例

報道関係者各位 平成 24 年 4 月 13 日 筑波大学 ナノ材料で Cs( セシウム ) イオンを結晶中に捕獲 研究成果のポイント : 放射性セシウム除染の切り札になりうる成果セシウムイオンを効率的にナノ空間 ナノの檻にぴったり収容して捕獲 除去 国立大学法人筑波大学 学長山田信博 ( 以下 筑

<4D F736F F D C482CC31816A E63289F18C9F93A289EF5F8B638E96985E81698A6D92E894C5816A2E646F63>

森林・河川等の環境中における 放射性セシウムの動き

技術資料 火山灰等を用いた重金属類の吸着性能に関する室内化学分析 * 田本修一 ** 岡﨑健治 *** 伊東佳彦 1. はじめに平成 22 年 4 月土壌汚染対策法の一部を改正する法律の施行により 自然由来の重金属類を含有する汚染土壌も規制の対象となった 建設工事区域内で発生した汚染土壌に対しても

< F2D D A92B28DB88CA48B86>

研究報告58巻通し.indd

表 -2 コマツナ植栽実験のまとめ プランタ 1 プランタ 2 備考 土壌の放射性 Ci(134,137) 濃度 (a) Bq/kg ( 検出限界 17.7Bq/kg) Bq/kg ( 検出限界 19.8Bq/kg) 原土は, 茨城県南部の住宅の庭土や側溝に堆積した土 土壌の

Microsoft PowerPoint ダイオフロック営業資料.ppt [互換モード]

いて一市町村当たり2 箇所の計 18 箇所で それぞれ実施してきています これまでの調査の結果 環境放射線量 ( 空間線量率 ) は 調査開始時の平成 26 年度から平成 29 年度までの変化率の平均は 44.5% となっています 計算により求められる物理学的減衰による低減率 35.1% と比較する

< F2D B4C8ED294AD955C8E9197BF C>

土壌含有量試験(簡易分析)

環境科学部年報(第16号)-04本文-学位論文の概要.indd


Ⅰ 収穫量及び作柄概況 - 7 -

Microsoft Word - HP掲載資料 docx

平成24年度農研機構シンポジウム資料|牛肉における放射性セシウムの飼料からの移行について

<4D F736F F D20819D8D4C95F194C78F4390B3836E835E B4C8ED2838C834E D96B18AAF834E838A83418DC58F4994C

Microsoft Word - ホタテガイ外海採苗2013

どうして GAP を導入するの? 産地や農家が安定した経営を続けるためには 次のような取組が必要です 産地の信頼を守るための体制を作りましょう 安全な農産物の生産は農家の責務です また 産地の農家のうち 1 人でも問題を起こせば 産地全体で出荷停止や商品回収を行わなければならず その後の取引にも影響

淀川水系流域委員会第 71 回委員会 (H20.1 審議参考資料 1-2 河川管理者提供資料

失敗しない堆肥の使い方と施用効果

リスクコミュニケーションのための化学物質ファクトシート 2012年版

注 3) 化学物質環境実態調査 ( 黒本調査 ) は 非意図的生成化学物質汚染実態追跡調査 ( 平成 5 ~13 年度 ) モニタリング調査 ( 平成 14 年度 ~) のデータをまとめた 注 4) 化学物質環境実態調査 ( 黒本調査 ) 内分泌攪乱化学物質における環境実態調査 については 環境中の

食品衛生の窓

ト ( 酢酸 ) を用いた ( 図 1) 各試薬がすでに調合されており操作性が良い また この分析方法は有害な試薬は使用しないため食品工場などでの採用が多く ISO などの国際機関も公定法として採用している F-キット ( 酢酸 ) での測定は 図 1の試薬類と試料を 1cm 角石英セル に添加し

<82A082C682E082B731318C8E8D862E696E6464>

概 要 2015 年 4 月 液体及びダストを中心に敷地境界外に影響を与える可能性があるリスクを広く対象としたリスク総点検を実施し, リスク低減対策の取組みは, 環境変化等を反映し適宜見直しを行っている リスク低減対策未着手の項目 ( 下記 1) については, 月末時点で 10 項目であ

Microsoft PowerPoint - ①23年度総括_訂正版

(1) 補助事業の内容 2017 年 4 月に避難指示が大部分の地区で解除された福島県飯舘村だが 生活面での不安から依然として避難者は多い 定住判断を保留しつつも避難先から飯舘村へ通って農業を再開している ( 通勤農業を実施している ) 人がいる 通勤農業では 圃場近くに滞在していないため 急激な天

参考 < これまでの合同会合における検討経緯 > 1 第 1 回合同会合 ( 平成 15 年 1 月 21 日 ) 了承事項 1 平成 14 年末に都道府県及びインターネットを通じて行った調査で情報提供のあった資材のうち 食酢 重曹 及び 天敵 ( 使用される場所の周辺で採取されたもの ) の 3

Microsoft Word - 報告書(全) doc

<4D F736F F F696E74202D FEB89C28B8B91D D836A B C >

(Microsoft Word - \225\361\215\220\217\221\201i\221S\201j.doc)

04千葉県農耕地土壌の現状と変化.indd

平成 29 年 7 月 20 日滝川タイムライン検討会気象台資料 気象庁札幌管区気象台 Sapporo Regional Headquarters Japan Meteorological Agency 大雨警報 ( 浸水害 ) 洪水警報の基準改正 表面雨量指数の活用による大雨警報 ( 浸水害 )

Taro-農業被害の概要

- 14 -

Slide 1

参考1中酪(H23.11)

仙台稲作情報令和元年 7 月 22 日 管内でいもち病の発生が確認されています低温 日照不足によりいもち病の発生が懸念されます 水面施用剤による予防と病斑発見時の茎葉散布による防除を行いましょう 1. 気象概況 仙台稲作情報 2019( 第 5 号 ) 宮城県仙台農業改良普及センター TEL:022

1,透析液汚染調査の狙い

<819A967B95B687452E786477>


H30年産そば方針

農環研のモニタリング調査と福島原発事故の影響調査(第29回土・水研究会 講演要旨)

2 号機及び 3 号機 PCV - 分析内容 原子炉格納容器 (PCV) 内部調査 (2 号機平成 25 年 8 月 3 号機平成 27 年 10 月 ) にて採取された (LI-2RB5-1~2 LI-3RB5-1~2) を試料として 以下の核種を分析した 3 H, Co, 90 Sr, 94 N

Microsoft Word - cap4-2013chugoku-hirosima

No. QCVN 08: 2008/BTNMT 地表水質基準に関する国家技術基準 No. QCVN 08: 2008/BTNMT National Technical Regulation on Surface Water Quality 1. 総則 1.1 規定範囲 本規定は 地表水質

ダイズ 起源 : 中国東北北部からシベリア ( 諸説あり ) 原種 : ツルマメ

すとき, モサプリドのピーク面積の相対標準偏差は 2.0% 以下である. * 表示量 溶出規格 規定時間 溶出率 10mg/g 45 分 70% 以上 * モサプリドクエン酸塩無水物として モサプリドクエン酸塩標準品 C 21 H 25 ClFN 3 O 3 C 6 H 8 O 7 :

水田メタン発生抑制のための新たな水管理技術マニュアル(改訂版)

( 速報 ) ~ 騒音 振動調査 ( 騒音 )~ 騒音レベル (db) 騒音レベル (db) 各地点の騒音調査結果 騒音調査結果まとめ (L のみ表示 ) NVR-2 NVR-3 L L L9 LAeq L L L9 LAeq 騒音レベル (db) 9 8 7

<4D F736F F D AA92E88C8B89CA88EA DA95CA8CDC8F5C89B98F87816A2E646F63>

資料 2 農業データ連携基盤の構築について 農業データ連携基盤 (WAGRI) WAGRI とは 農業データプラットフォームが 様々なデータやサービスを連環させる 輪 となり 様々なコミュニティのさらなる調和を促す 和 となることで 農業分野にイノベーションを引き起こすことへの期待から生まれた造語

仮設焼却施設の運転状況(11月4日~12月26日)

Transcription:

放射性セシウム濃度の高い米が発生する要因とその対策について ~ 要因解析調査と試験栽培等の結果の取りまとめ ~ ( 概要 ) 1.24 年産米の放射性物質検査の結果 2. 作付制限 自粛区域での試験栽培の結果 4.24 年産で基準を超過した米が生産された要因の解析 5. 総括 平成 25 年 1 月福島県農林水産省

1.24 年産の米の放射性物質検査の結果 24 年産の福島県の米の全袋 ( 玄米 3 kg/ 袋 ) 検査の結果 約 1, 万袋検査を行った中で 基準値 (1 Bq/kg) を超過した放射性セシウムを含む玄米は 71 袋 ( 超過率.7 %) に止まった ( 平成 24 年 12 月末現在 ) 昨年基準値超過が見られた地域周辺の緊急調査実施地域内だけで比較すると 1 Bq/kg を超える放射性セシウムを含む玄米の割合は 昨年は 1 % 以上あったのに対して今年は.2 % 程度となり カリ肥料の施用などの吸収抑制対策等の実施により玄米中の放射性セシウム濃度が大幅に低下したことが明らかとなった ( ) ( ) カリ肥料の施用効果等は後述 図 1 1,1 1, 9 1,12,899 (99.8%) 福島県における 24 年産の全袋検査結果 総検査点数 :1,34,956 点 ( 平成 24 年 12 月末現在 ) 検8 査点7 数6 (万5 点4 )3 2 19,928 1,669 389 1 (.2%) (.17%) (.4%) 25 未満 25~5 5~75 75~1 1< 玄米中の放射性セシウム濃度 (Bq/kg) 71 (.7%) 福島県において 24 年産米の出荷前に行った全袋検査の結果 吸収抑制対策等の実施により 基準値を超過した検体は 71 袋 ( 平成 24 年 12 月末現在 ) に止まった 図 2 1 95.8% (2,295) 99.95% (2,989,264) 23 年産の緊急調査結果との比較 23 年産米 ( 総検査点数 :21,189 点 ) 24 年産米 ( 総検査点数 :2,99,724 点 平成 24 年 12 月末現在 ) 検査点数の割合( %) ~5 5~75 75~1 1~15 15~2 2~ 5 5 Bq/kg 超 23 年産米 (4.219 %) 24 年産米 (.47 %) 1 Bq/kg 超 23 年産米 (1.468 %) 24 年産米 (.2 %) 1.7% (364) 1.% (219).4% (1,1).1% (34).89% (189).1%.32% (36) (67).3% (9).26% (55).4% (11) 玄米中の放射性セシウム濃度 (Bq/kg) 1 23 年産の緊急調査の調査対象地域 (23 年産の検査で放射性セシウムが検出された 29 市 141 旧市町村 比較のため 24 年産で作付制限した旧市町村は除く ) について 23 年産の緊急調査と 24 年産の全袋検査を比較したもの

2. 作付制限 自粛区域での試験栽培の結果 24 年産の米の作付制限 自粛区域内における 4 カ所のほ場でカリ施肥などの吸収抑制対策を実施し試験栽培を行った結果 生産された玄米の放射性物質濃度を分析できた 396 カ所のうち 395 カ所のほ場において 基準値以下の米を生産できることが実証された 24 年産の作付制限 自粛区域内における試験栽培の結果 ( 概要 ) 町村単独事業により実施 うち 1 Bq/kg 以下 うち 1 Bq/kg 超 福島市作付制限区域 32 31 1 伊達市作付制限区域 75 75 二本松市作付制限区域 27 27 田村市作付自粛区域 43 43 相馬市作付制限区域 5 5 南相馬市 区域区分 ほ場数 作付自粛区域 12 12 作付制限区域 6 6 葛尾村作付制限区域 3 3 広野町 作付自粛区域 39 39 川内村 作付自粛区域 36 36 楢葉町 作付制限区域 1 1 図 3 検査点数の割計 396 395 1 1% 合表 1 8% 6% 4% 2% 交付金事業や市町村事業等を活用し 作付制限 自粛区域内の放射性セシウムで汚染されたほ場において 深耕などの除染のほか カリ肥料の施用など吸収抑制対策を実施することで 基準値以下の米が生産できることを実証した ( 全 4 カ所 ) 基準値の 1 Bq/kg を超える放射性セシウムを含む玄米が生産されたほ場は 全試験ほ場中 1 カ所のみであった ( 注 )4 カ所中 4 カ所では 鳥獣被害により未計測このほ場は 23 年産の玄米濃度が特に高い値を示した区域にあるが 吸収抑制対策により玄米濃度は昨年の 1/1 以下と大幅に低減した (12 Bq/kg) 本年作では 肥料の種類や施肥時期等を更に改善していくことで 一層の低減も可能と考えられる 福島市 (24 年産の作付制限区域 ) における 23 年産と 24 年産の放射性物質調査結果の比較 % 65% 97% 13% % 7% 3% 23 年産米の緊急調査 ( 全 515 点 ) 24 年産米の試験栽培 ( 全 32 点 ) 9% 3% 3% % % % 5 以下 51~1 11~15 151~2 21~25 251 以上 24 年産の福島市の作付制限区域について 23 年産の緊急調査の結果と 24 年産の試験栽培の結果を 玄米中の放射性物質濃度の割合で比較したもの 除染や吸収抑制対策を施した 24 年産は 23 年産と比べ 玄米中の放射性物質濃度が低く抑えられていることがわかる 玄米中の放射性物質濃度 ( Bq/kg) 2

1 土壌の影響ア土壌中の放射性セシウム濃度 土壌の放射性セシウム濃度と玄米中の放射性セシウム濃度の間には相関は見られない 土壌中の放射性セシウム濃度と玄米中の放射性セシウム濃度の関係 図 4 14 玄米中の放射性セシウム濃度 (Bq/kg FW) 12 1 8 6 4 2 土壌中の濃度が 1, Bq/kg 未満でも玄米中の濃度が 5 Bq/kg を超える値も見られる 土壌中の濃度が 5, Bq/kg を超えるところでも 大部分 (76%) の玄米中濃度は 2 Bq/kg 未満と低い 2,5 5, 7,5 1, 12,5 土壌中の放射性セシウム濃度 (Bq/kg DW) 平成 24 年に福島県内 432 地点で玄米及び土壌中の放射性セシウム濃度を調査した結果 ( 134 Cs と 137 Cs の合計値を でプロット ( 一方が検出下限値未満の場合は検出下限値を利用して合計値を算出 )) また 134 Cs 及び 137 Cs のいずれも検出下限値未満であった地点のデータは 134 Cs 137 Cs それぞれの検出下限値の合計値を でプロット 土壌中の放射性セシウム濃度は高いが玄米中の濃度が低い検体がある一方 土壌中の濃度は低いが玄米中の濃度が高い検体もあり 土壌と玄米の放射性セシウム濃度に相関は見られない 3

1 土壌の影響イ土壌中の交換性カリ含量 ( その 1: 低減効果 ) 土壌中のカリウムは セシウムと化学的に似た性質を有しており 作物が吸収する際に競合してセシウム吸収を抑える働きがあり 24 年産では土壌中の交換性カリ含量 25 mg K2O/1g( 農研機構が公表した米の吸収抑制対策に必要とされる水準 ) を目標としてカリを施用したところ 玄米中の放射性セシウム濃度が大幅に低減した 土壌中の交換性カリ含量と玄米中の放射性セシウム濃度の関係 図 5 玄米中の放射性セシウム濃度 (Bq/kg) 1,2 1, 8 6 4 2 カリ肥料を施用せず 土壌中の交換性カリ含量が低い状態のままだと 高濃度の放射性セシウムが吸収される H23 A 地区 ( グライ土 ) H24 B 地区 ( 灰色低地土 ) H24 C 地区 ( 多湿黒ボク土 ) カリ施肥により放射性セシウムの吸収を抑えることができる 2 4 6 8 土壌中の交換性カリ含量 (mg K 2 O/1g) 23 年産の玄米から 5 Bq/kg を超える高濃度な放射性セシウムが検出された地域において 24 年に現地試験を実施し 土壌中の交換性カリ含量と玄米中の放射性セシウム濃度との関係を整理したもの 23 年産で 5 Bq/kg を超える放射性セシウムを含む玄米が検出された地区でも 土壌中の交換性カリ含量が 25 mg K2O/1g 以上あれば 玄米の放射性セシウム濃度は基準値以下となった また 異なる 3 地区で確認したところ いずれの地区でも同様の効果が見られた 稲わらの取扱による土壌中の交換性カリ含量への影響 図 6 25 土壌中の交換性カリ含量 (mg K2/1g) 2 15 1 5 稲わら還元 稲わら持ち出し 稲わらにはカリウムが多く含まれているため これをほ場に還元すると土壌中の交換性カリ含量を維持しやすくなる 実際に 福島県農業総合センターで 約 2 年間稲わらを土壌に還元した水田と 持ち出した水田各 1 ほ場について土壌中の交換性カリ含量を調査したところ 持ち出した水田の土壌中の交換性カリ含量は 還元した水田の約半分であった 一般に 交換性カリ含量が低くなりやすいほ場として 以下のほ場が挙げられる 長年稲わらの還元 たい肥の施用等が行われていないほ場 自家用等で長い間カリ肥料の施用が行われていないほ場 砂質土壌など保肥力の弱いほ場 4

1 土壌の影響イ土壌中の交換性カリ含量 ( その 2: 施用方法等との関係 ) カリ肥料の施用による吸収抑制対策としては 稲による放射性セシウムの吸収は生育前半に多いため 1 ケイ酸カリより速効性の塩化カリを利用すること 2 カリ肥料の施肥時期も基肥を基本とし さらにカリ肥料を追肥する場合は分げつ期の早期に行うことが必要である 稲全体に含まれる放射性セシウム量の推移 ( 時期別の吸収パターン ) 図 7 稲全体の Cs 量がほぼ横ばいで Cs 吸収が少ない 6 稲全体の Cs 量が急増しており Cs 吸収が多い 稲全体の 137 Cs 量 (Bq m -2 ) 4 4 2 2 分げつ期 幼穂形成期出穂期成熟期 6/1 6 月 1 日 6/3 6 月 3 日 7 7/2 月 2 日 8 月 8/9 9 日 8 月 8/29 29 日 9 月 9/18 18 日 基肥 追肥適期 土壌の放射性 137 Cs 濃度が 2,355 Bq/kg 交換性カリ含量が 3. mg K 2 O/1g のグライ土水田において 6 月 1 日から 9 月 18 日まで 5 回にわたり稲の放射性セシウム吸収量を測定した試験結果 5 放射性セシウムは 生育前半に多く吸収され その後茎葉から玄米に転流していくと考えられる このため 吸収抑制対策としてのカリの効果は 生育前半に発揮させることが重要である

塩化カリとケイ酸カリの吸収抑制効果の比較 図 8 玄米中の放射性セシウム濃度 ( Bq/kg) 25 2 15 1 5 塩化カリケイ酸カリカリ肥料の施用なし 55 1 1 2 2 3 3 カリ施用量 (kg K2O/1a) 土壌の交換性カリ含量が 3.3 mg K 2 O/1g のグライ土によるポット試験 カリ肥料を 1a 当たり 塩化カリとして 8.3 16.6 33.3 5. kg (K2O として 5 1 2 3 kg) ケイ酸カリとして 5 1 kg(k2o として 1 2 kg) 施用し 玄米中放射性セシウム濃度をカリを施用しない処理の玄米濃度と比較した試験結果 土壌の交換性カリ含量が目標値を大きく下回る場合 毎年のカリ施肥では 土壌中でカリ成分がゆっくりと溶け出すく溶性のケイ酸カリに比べ 早く溶け出す速効性の塩化カリの方が 玄米中の放射性セシウム濃度の低減率が高いことがわかる 塩化カリの施肥時期による吸収抑制効果の比較 図 9 玄米中の放射性セシウム濃度 ( Bq/kg) 6 5 4 3 2 1 カリ無施用基肥 (5/7) 施用中干し期 (6/28) 施用幼形期 (7/19) 施用減分期 (7/3) 施用 土壌中の交換性カリ含量が 14.7 mg K 2 O/1g のグライ土水田において塩化カリ (K2O として 8 kg/1a) の施用時期を変えて 玄米中放射性セシウム濃度の吸収抑制効果を検討した試験結果 同量を施肥するのであれば 追肥よりも基肥として 早い時期から施肥する方が効果が高いことがわかる 6

1 土壌の影響イ土壌中の交換性カリ含量 ( その 3: 保肥力の弱い土壌での留意点 ) カリ肥料を施用しても 保肥力の弱い土壌では 作期終了後には土壌中の交換性カリ含量は低下する 土壌のカリ供給力が適正に維持されるよう 25 年産についても土壌診断に基づいた施肥を行うことが重要である 肥料 資材施用後の土壌中の交換性カリ含量の推移 図 1 25 1 現地慣行施肥 ( 塩化カリ 6.7kg/1a) + 塩化カリ 52.kg/1a K2O として 合計 35.2 kg/1a 土壌中の交換性カリ含量 (mg K2/1g) 2 15 1 5 資材投入前 5 月 23 日 6 月 15 日 7 月 6 日 7 月 25 日 8 月 17 日収穫後 2 3 現地慣行施肥 ( 塩化カリ6.7kg/1a) +ケイ酸カリ16kg/1a K2Oとして 合計 36. kg/1a 現地慣行施肥 ( 塩化カリ6.7kg/1a) K2Oとして 4. kg/1a 1 及び 2 は 現地の慣行施肥である塩化カリ 6.7kg/1a に加え 交換性カリ含量を 25 mg K2O/1g とすることを目標に それぞれ塩化カリ及びケイ酸カリを施用 3 は現地の慣行施肥である塩化カリ 6.7kg/1a のみを施用 (K2O としては 135.2 kg/1a 236. kg/1a 34. kg/1a ) 土壌中の交換性カリ含量が低く 保肥力も比較的弱い土壌 ( 交換性カリ含量 :3.3~3.9 mg K 2 O/1g CEC:11.3~14.7 me/1 g 粘土割合 :14.4~19.3 % のグライ土壌 ) における塩化カリ ケイ酸カリ施用後の交換性カリ含量の変化を調査した試験結果 施用した肥料 資材の種類や量によっては 収穫後には交換性カリ含量が資材投入前の水準まで低下しており こうしたほ場では 25 年産に向けて改めて十分なカリ肥料等を投入することが重要であることがわかる 7

1 土壌の影響イ土壌中の交換性カリ含量 ( その 4: ゼオライト等の施用との関係 ) ゼオライト バーミキュライトの施用により玄米の放射性セシウム濃度の低減効果は認められるが 放射性セシウムの吸着効果より むしろゼオライト等に含まれるカリウムの効果で説明できると考えられた このため 吸収抑制対策は カリ肥料による土壌中のカリ含量の確保を基本とし ゼオライト等については カリ肥料だけでは効果が不十分な土壌であって 砂質土等で保肥力が問題となる場合に 保肥力の向上等を目的として投入することが適切である 図 11 抽出液中放射性セシウム濃度の無処理区に対する割合 (%) 11 1 9 8 7 6 ゼオライトによる土壌中の放射性セシウム吸着効果 5.1.1 1 1 ゼオライト - 土壌の混合比 (%) 火山灰土 砂質土 放射性セシウムを含む火山灰土と砂質土にゼオライトを土壌の.1 %.5 % 1. % 1 % 混合 ゼオライトを加えない土壌の放射性セシウムの抽出溶液 (1M 酢酸アンモニウム ) の濃度を 1 とし ゼオライト混合土壌からの抽出溶液濃度の低下割合で吸着効果を調査した試験 混合比が少ない 1 %(1~1.5 t/1a) 程度では 吸着による濃度の低下は僅かだが 1 %(1~15 t/1a) 程度では濃度の低下が顕著になる ゼオライト等の施用による土壌中の交換性カリ含量と玄米中の放射性セシウム濃度への影響 図 12 5 玄米 Cs-137 濃度 (Bq/kg.15% 水分補正 ) 4 3 2 1 R² =.6891 ゼオライト 5 kg/1a ゼオライト 1 t/1a 塩化カリ 52 kg/1a 現地慣行 5 1 15 2 25 土壌中の交換性カリ含量が 4 mg K2O/1g 以下とカリが不足している水田において ゼオライト 塩化カリを施用し 玄米への吸収抑制効果を検討した試験結果 なお 全処理区に施肥カリとして 4 kg/1a を施用し 土壌中交換性カリウム含量は 5 月 23 日時点の測定値 ゼオライト等の施用による玄米中の放射性セシウム濃度への効果は 土壌中の交換性カリ含量によって説明できたことから 少量のゼオライト等の施用は 吸着による効果よりゼオライト等に微量に含まれるカリウムの効果によって吸収抑制が図られたと考えられる 土壌中の交換性カリ含量 (mg K 2 O/1g) 8

1 土壌の影響ウ土壌の放射性セシウムの吸着 固定力 土壌中の放射性セシウムは 時間の経過とともに土壌中の粘土鉱物による固定が進み 作物が吸収しにくくなると考えられるため 粘土含量が少ない砂質土等の固定力の弱い土壌は注意が必要である 粘土含量が多い土壌であっても 放射性セシウムの固定力が弱い粘土鉱物の場合は 作物は土壌中の放射性セシウムを吸収しやすくなる 現在 土壌の固定力を評価する取組も行われており こうした固定力が弱い土壌では吸収抑制対策の徹底が重要である 土壌中の粘土の割合と雲母由来の粘土鉱物の含有状況 図 13 農地土壌中の粘土の割合の調査結果と 粘土鉱物組成を X 線回折により調査し雲母由来の粘土鉱物かどうかを調査した結果を地図上で整理したもの 平成 23 年産において 玄米から比較的高い放射性セシウム濃度が検出された地域は 1 粘土含量が少ない砂質土等の土壌が分布している山地及び丘陵地帯や 2 粘土含量が多くてもセシウム固定力の強い雲母由来の粘土鉱物が検出されない地域が多いことがわかる こうした地域において 土壌中の交換性カリ含量が低い場合は注意が必要である 農地の粘土含有率.~1. % 1.~2. % 2.~3. % 3.~4. % 4.~5. % 5.~77. % 粘土鉱物の性質 9 雲母由来の粘土鉱物が検出されない地点 雲母由来の粘土鉱物が検出される地点

セシウムの吸着 固定力 図 14 粘土鉱物の層状構造 層間 セシウムをあまり固定しない粘土鉱物の例 ( モンモリロナイトなど ) 吸着 セシウム 粘土鉱物の層状構造 セシウムを固定する能力の高い粘土鉱物の例 ( バーミキュライト イライトなど ) 吸着 固定 セシウム 吸着 吸着 粘土鉱物は 表面に負の電荷を持ち セシウムを 吸着 することができるほか 一部の粘土鉱物は時間の経過とともにセシウムを内部に取り込んで 固定 する能力を持つ 吸着 されたセシウムは 植物が吸収することができるが 一旦 固定 されると吸収することが難しくなる 表 2 土壌構成成分 Cs 吸着 Cs 固定 土壌有機物高い低い 粘土鉱物 ( 非雲母由来 ) カオリナイト ハロイサイト 高い 低い アロフェン イモゴライト 高い 低い~ 中程度 モンモリロナイト高い低い 粘土鉱物 ( 雲母由来 ) バーミキュライト 高い 高い イライト 高い 中程度 ~ 高い アルミニウムバーミキュライト 高い 中程度 ~ 高い ゼオライト高い高い ( 注 ) ( 注 ) 産地や品質によって固定力の低いものもある 土壌有機物や粘土鉱物であっても雲母由来でないモンモリロナイト等は セシウムを固定する能力が低い バーミキュライトやイライトなど雲母鉱物由来の粘土は セシウムを固定する能力が高い 図 15.4 玄米への移行係数.3.2.1 順位相関係数 ρ=-.727*** バーミキュライトを多く含む土壌 バーミキュライトを多く含む土壌では 同じ交換性カリ含量でも 放射性セシウムの玄米への移行係数 ( 注 ) は低くなる ( 注 ) 玄米への移行係数 1 2 3 4 土壌の交換性カリ mg/1g 土壌中の交換性カリ含量 (mg K2O/1g) = 玄米中の放射性セシウム (Bq/kg FW) 土壌中の放射性セシウム (Bq/kg DW) 1

図 16 土壌から玄米への放射性セシウム移行係数.8.6.4.2 ( 参考 ) 土壌のセシウムの固定力の評価指標 y =.41e -3E-4x R² =.59 2 4 6 8 RIP(mmol/kg) 放射性セシウム捕捉ポテンシャル (R I P: Radiocaesium Interception Potential) は土壌の放射性セシウム固定能 ( セシウムを固定するサイトの容量 ( 単位 :mmol/kg)) を評価する指標 交換性カリ含量が十分にある土壌では RIP が高い土壌ほど玄米の放射性セシウム移行係数は低くなる 現在 本指標を用いて固定力の調査などが進められている 11

1 土壌の影響エ作土の厚さ このほか 耕うんが浅い場合は 土壌表層に放射性セシウムと根張りが集中するため 放射性セシウムを吸収しやすくなると考えられる こうした作土層の薄いほ場では 深耕等により放射性セシウムを土壌中で希釈し 作土層を拡大して根張りを改善することが重要である 土壌中の放射性セシウムの鉛直分布 福島市旧小国村 1 福島市旧小国村 2 図 17-2.5cm 表土からの深さ (cm) 2.5-5cm - 5 5-7.5cm 5-7.5 7.5-1cm 7.5-1 1-15cm 1 2 3 1, 2, 3, 土壌中の放射性セシウム濃度 (Bq/kg) Bq/kg -2.5cm 23 年産において玄米から高い放射性セシウムが検出された地域における土壌中の放射性セシウム濃度の鉛直分布の例 2.5-5cm 5-7.5cm こうした土壌では 下の写真にあるように 根張りが浅く 表層近くに根が集中している 7.5-1cm なお 畑では耕うんにより均一に放射性セシウムが存在するのに対し 水田では耕うんしても鉛直方向の濃度勾配が見られることがある これは 代かきにより放射性セシウムを吸着した粘土が浮き上がること等によるものと考えられる 1-15cm 5 1 15 Bq/ 図 18 作土層が浅い水田における水稲の根部 ( 作土の厚さ約 1cm) 12

2 水田に流入する水の影響 ( その 1: 流入水の水質との関係 ) 水田に流入する水に含まれる放射性セシウムのうち 溶存態 ( 1) のセシウムは作物が直接吸収できるのに対して 懸濁態 ( 2) のセシウムは作物が直接吸収し難く 作物への移行は基本的に小さいと考えられる ( 1 と 2 は いずれも下図 19 参照 ) ため池や水路等の水質調査によると 1 通常は検出下限値 ( 134 Cs 137 Cs とも 1 Bq/L 程度 ) 未満である 2 大雨時などの濁水では懸濁態のセシウムにより濃度上昇が見られることはあるが これは一時的なものである 3 こうした濁水をろ過した水に含まれる溶存態のセシウムは検出下限値未満であることが明らかとなった こうした結果であれば 水からの影響は限定的と考えられる 水中のセシウムの形態 ( イメージ ) 図 19 田面水 懸濁態 Cs 懸濁物質固定態 Cs 吸着態 Cs 水稲茎 水に含まれる放射性セシウムには 水中にイオン等で溶けている溶存態のほか 浮遊する土壌粒子や有機物などの懸濁物に吸着 固定されている懸濁態がある 土壌粒子 溶存態 Cs 水稲根 かんがい水や田面水中の懸濁物質に含まれている固定態や吸着態のセシウム (Cs)( 懸濁態セシウム ) は直接水稲の茎や根から吸収されることはないが 田面水中の溶存態や作土中の水溶性のセシウムは茎や根を通して移行する 作土 田面水の溶存態 懸濁態の放射性セシウムの稲体への吸収 図 2 13 溶液等に含まれる放射性セシウムの稲体による吸収率 (%) 1 8 6 4 2 有機物土壌粒子溶存態 県内採取の落葉から水で 137 Cs 抽出した溶液を 1 布でろ過した後 ろ紙 (No.131) でろ過した残渣を 有機物 2 土壌粒子を添加し 2 時間振とう後 ろ紙 (No.131) でろ過した残渣を 土壌粒子 3.45μm フィルターでろ過した液を 溶存態 として供試したポット試験 ポット (U8 容器 ) にそれぞれ 3 Bq 添加後 葉齢 3.8 のイネを 1 本移植し 移植 11 日後に採取して 137 Cs 濃度を測定した 稲全体で溶存態の吸収率が 79 % であったのに対して 有機物では 16 % 土壌粒子では 4 % と低く 137 Cs の様態によって吸収率に大きな差異があった

図 21 9 8 7 6 箇所数 5 4 3 2 1 85 79 (97%) 73 (92%) (96%) ため池における放射性セシウムの調査結果 2 1 (2%) 1 2 (2%) (1%) (1%) 2/2~3/9 採水 2 1 (2%) (1%) 3/26~4/6 採水 1 2 (1%) (2%) 7/24~8/4 採水 1 (1%) <2. 2.~2.9 3.~3.9 4.~4.9 5.~9.9 1~14.9 放射性セシウム濃度 (Bq/L) 第 1 回第 2 回第 3 回 検出下限値は 134Cs 137Cs ともに 1 Bq/L 程度 中通り 浜通り ( 警戒区域等を除く ) の空間線量の比較的高い地域 ( 概ね 1μSv/h 以上 ) のため池 98 箇所 を対象に 3 回 ( かんがい期前 2 回 出穂期 1 回 ) 採水し放射性セシウム濃度を測定 貯水位不足等で採水できないため池があり 第 1 回 ~ 第 3 回は それぞれ 76 箇所 86 箇所 88 箇所で採水 3 回とも調査ため池の 9% 以上が 2.Bq/L 未満 ( 検出下限値未満含む ) であった 検出された水の放射性セシウム濃度は 1.8~13.6 Bq/L 検出された水は濁っていたことから 1μm フィルターでろ過したところ ろ過後の水は全て検出下限値未満であったことから ため池の水の放射性セシウムは 主に濁り成分に含まれている懸濁態であると考えられる 図 22 14 12 1 8 6 4 2 図 23 Bq/L( ろ過前 ) 渓流水中における放射性セシウムの調査結果 3/1 4/1 5/1 6/1 7/1 8/1 9/1 1/1 伊達 ( 日付 ) 福島県内 6 箇所において 森林から流れ出る渓流水を 24 年 3 月以降 毎日採水し 放射性セシウム濃度を計測 ( 掲載データは伊達市のもの 灰色の帯は欠測日を示す ) 渓流水採取現場 ( 平水時 ) 放射性セシウムは 降雨のあった日など一部を除き 大部分の試料は検出下限値未満であった ( 検出下限値は 134 Cs 137 Csともに1Bq/L) 放射性セシウムが検出された試料には濁りが見られたため.5μmガラス繊維フィルターでろ過したところ ろ過後の水は検出下限値未満であったことから 渓流水中の放射性セシウムは 主に泥等の濁り成分に含まれているものと考えられる 14

水田内で採取した水における放射性セシウムの調査結果 ( かんがい水 表面排水の濃度 ) 表 3 単位 : 134 Cs + 137 Cs [Bq/L] 平成 24 年 形態 圃場 8 月 14~21 日 8 月 23 日 9 月 3~4 日 9 月 4~11 日 かんがい水 ( 水口付近 ) 表面排水 ( 水尻付近 ) かんがい水 ( 水口付近 ) 表面排水 ( 水尻付近 ) かんがい水 ( 水口付近 ) 表面排水 ( 水尻付近 ) かんがい水 ( 水口付近 ) 表面排水 ( 水尻付近 ) 玄米 A 1.1 5.5.3 <.2 42.3.5 6.8 4.8 7.9 B 1.6.2 1.2 <.2 2.8 <.2 6.6 1.6 2.5 懸濁態 + 溶存態 C.4 <.2.5 <.2.9.2 6. 1.6 <2. D.3 <.2.3.2.8.3 5.7 19.1 <2. E.2 <.2 <.2.2 1..5 1.1.5 62.1 F 4.6.2.7.2 1.4.2 28.1 25.9 24.3 A <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 B <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 溶存態 C <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 D <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 E <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 F <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 同上 1 Bq/L 超 1~1 Bq/L 検出下限値 (.2 Bq/L) 未満 ほ場試験でのかんがい水 ( 水口付近の田面水 ) と表面排水 ( 水尻付近の田面水 ) の形態別放射性セシウム濃度及び玄米中の放射性セシウム濃度 ( 溶存態は原水を.45 μm メンブレンフィルターでろ過 斜体は 137 Cs は検出されたが 134 Cs が検出下限値未満を指す ) かんがい水や表面排水中の放射性セシウム濃度は.2 未満 ~42.3 Bq/L であったが 水稲に直接吸収されると考えられる溶存態は検出下限値 (.2 Bq/L) 未満であった 15

2 水田に流入する水の影響 ( その 2: 水からの移行及び土壌中のカリ含量との関係 ) 異なる濃度の放射性セシウム ( 溶存態 ) を含んだ水を田面水として用いたポット試験を行ったところ 水の濃度に応じて玄米の濃度が高まることは確認されたが 水からの移行は限定的であった また カリ肥料等の施用による吸収抑制対策により 水からの移行についても低減できることが明らかとなった 全袋検査の結果でも 水源が原因でまとまって基準値を超過する事例はこれまでのところないが 玄米中の放射性セシウム濃度が土壌からの移行だけで説明することが難しい事例も一部にあり 水からの影響については引き続き調査を行うこととしている 図 24 玄米中の放射性セシウム濃度 ( Bq/kg) 5 4 3 2 1 用水に含まれる放射性セシウムの資材施用による吸収抑制効果 ( 放射性セシウム濃度の極めて高い水を調製して用水として使用した試験の結果 ) ポット A ポット B ポット C ポット D 水道水カリ 5 kg/1a Cs 水カリ 5 kg/1a Cs 水 + カリ増肥カリ 3 kg/1a Cs 水 + ゼオライトカリ 5 kg/1a ゼオライト 1 t/1a 土壌中の交換性カリ含量 (mg K2/1g) 2.7 2.1 3.1 5.9 交換性カリ含量 3.3 mg K2O/1g 2, Bq/kg のグライ土を用いたポット試験 各ポットには 移植前に放射性セシウム濃度 39 Bq/L( 溶存態 ) の用水を 2 L と K2O として 5 kg/1a 相当の塩化カリを投与 また 移植後には 水道水 ( ポット A) 又は放射性セシウム濃度 4 Bq/L( 溶存態 ) の水 ( ポット B~D) を田面水として各 1.5 L ずつ投与 さらに ポット C には K2O として合計 3 kg/1a 相当となるよう塩化カリ ポット D には 1 t/1a 相当となるようゼオライトを投与 吸収しやすい溶存態放射性セシウムを極めて高濃度に含む田面水を用いた場合でも カリ肥料等を多く施用することで 玄米中の放射性セシウム濃度を低く抑えることができる このため カリ施用等で交換性カリ含量を確保することにより 田面水からの吸収も抑制することが明らかになった 16

図 25 3 田面水の放射性セシウム濃度が玄米の放射性セシウム濃度に及ぼす影響 29 図 26 玄米 Cs-137 濃度 ( Bq/kg) 25 2 15 1 5 27 3 農総センター用水 2 2.1 Bq/L 61 9 1. Bq/L 放射性セシウムを含む原水をろ過により溶存態とした水 56 1. Bq/L 24 A 地区の平水時の用水 A 地区の降雨後の用水 研究協力 ( 独 ) 産総研 福島県農業総合センターと B 市 A 地区の下層土 ( いずれの土壌も放射性セシウム ( 137 Cs) 濃度は 15 Bq/kg) を用いたポット試験 田面水として (a) 溶存態で放射性セシウムを.1 1. 1 Bq/L 含むよう調製した水 (b) 農総センター用水 (.4 Bq/L) (c) A 地区で降雨後及び平水時に採取した水 (.3 Bq/L 1.4 Bq/L) を用いて稲を栽培 この結果 以下の点が明らかになった A 地区 (H23 玄米 5 Bq/kg 以上 灰色低地土 ) の土壌を使用したポット試験 交換性カリ含量 5. mg K2O/1g 乾土 雲母由来の粘土鉱物がほとんどみられない土壌 福島県農業総合センター (H23 玄米 1 Bq/kg 未満 灰色低地土 ) の土壌を使用したポット試験 交換性カリ含量 17.6 mg K2O/1g 乾土 雲母由来の粘土鉱物を含む土壌.3 Bq/L 1 溶存態で 137 Cs を 1. Bq/L 含む田面水が作期を通じて流入し続けたとしても 玄米の 137 Cs 濃度は大きく上昇しない 137 Cs をほとんど含まない農総センター用水で栽培した場合と比べ 玄米の 137 Cs 濃度の増加は A 地区の土壌では 34 Bq/kg センターの土壌ではわずか 7 Bq/kg 程度に止まるとの結果となった 36 1.4 Bq/L ポット試験の生育状況センター土壌 ( 左 ) A 地区土壌 ( 右 ) 処理水の 137 Cs 濃度は 1 Bq/L 2 実際の現場での懸濁態を含む用水では 田面水の 137 Cs の濃度の影響は 1 の結果よりも更に小さいと考えられる A 地区の土壌を用いた試験において 137 Cs をほとんど含まない農総センター用水で栽培した場合と比べ ( ア ) 溶存態で 137 Cs 濃度が 1.4 Bq/L の水を用いた場合の玄米の濃度上昇は 46 Bq/kg 程度と推計されるが ( イ ) 降雨後の用水 ( 溶存態と懸濁態の 137 Cs の合計 1.4 Bq/L) を田面水として用いた場合の玄米の濃度上昇は 9 Bq/kg に止まった 17 3 セシウムの固定力が強い粘土鉱物を含み 土壌中の交換性カリ含量が高い土壌の方が 田面水から玄米への移行の程度も小さい A 地区の土壌 ( 雲母由来の粘土鉱物 少 交換性カリ含量 5. mg K2O/1g) と 農総センターの土壌 ( 雲母由来の粘土鉱物 多 交換性カリ含量 17.6 mg K2O/1g) では 田面水の 137 Cs 濃度の増加に伴う玄米の 137 Cs 濃度の増加量に 4~5 倍の差があった

3 乾燥 調製等のプロセスでの交差汚染 混入 平成 24 年産の全袋調査では ごく一部の米袋で高い値を示したが 洗浄や異物を除去することにより低濃度となる事例が見られた これらは 汚染された籾すり機の利用や汚染物の混入が原因の交差汚染と考えられることから 1 収穫乾燥調製機器等の清掃の徹底 2 異物の混入防止等を基本として 交差汚染防止対策を進めることが必要である 表 5 全袋調査における交差汚染の事例 地域発生状況要因 A 地区 B 地区 洗浄前 22 Bq/kg( 参考値 ) 洗浄後 25 Bq/kg( 確定値 ) 洗浄前 118 Bq/kg( 参考値 ) 洗浄後 38 Bq/kg( 確定値 ) 当該生産者は 原発事故当時に警戒区域にあった籾すり機を持ち出して清掃せずに使用していた 玄米を洗浄して測定した結果 放射性物質濃度が大幅に低下したことから 籾すり機の交差汚染と考えられる 当該生産者は 昨年使用しなかった籾すり機 乾燥機等を使用していた 玄米を洗浄して測定した結果 放射性物質濃度が大幅に低下したことから これら機器による交差汚染と考えられる 汚染防止対策のポイント 機器の清掃 管理に関するガイドラインを作成予定 ( 年度内 ) 1 収穫作業開始前 使用する建物や収穫乾燥調製機器等は 点検を行い 故障や損壊は修理 修繕するとともに 徹底した清掃を行い 異物混入の恐れがある場合は防止措置を講じる 米袋は 汚染がないように保管管理された新しいものを用意する 2 収穫作業 籾に土が付着しないよう留意するとともに 倒伏した稲は区分管理する トラクター コンバイン等の格納時には 足回りの洗浄 清掃を行う 3 籾すり作業 作業前 中の清掃及び異物混入防止対策を徹底し 作業場の床に落ちた籾は籾すり機に再投入しない 使用後は清掃し シートで覆う等の異物混入防止対策を講じる 18

4.24 年産で基準を超過した米が生産された要因の解析 24 年産で基準を超過した米が生産された要因を調査するため 栽培状況や土壌等の調査を行ったところ これまで分析が終わった 7 カ所のほ場ではいずれも土壌の交換性カリ含量が 1 mg K2O/1g を下回っていた また 各ほ場とも 稲わらをほ場から持ち出しており これにより土壌中の交換性カリ含量が低かったものと考えられる このため 基準値を超過した要因は 土壌中に十分なカリが無かったため 放射性セシウムの移行が高まったと考えられ 25 年作では カリ施肥を徹底することで玄米の放射性物質濃度が低減できると見込まれる 表 6 1 Bq/kg 超の米が検出されたほ場等の調査結果 ( 平成 25 年 1 月 23 日現在 ) 玄米調査土壌分析施肥 土改材 No 調査数 1Bq 超最大値土壌放射性セシウム土壌交換性カリカリ施肥量土改材 ( 袋 ) ( 袋 ) (Bq/kg) (Bq/kg) (mg K2O/1g) (K2O-kg/1a) (kg/1a) 稲わら還元状況 用水 1 32 1 11 分析中 分析中 6. - 持ち出し ため池 2 187 7 11 2,597 4.4 8.9 8 持ち出し ため池 3 7 1 12 2,783 5.6 3.2 - 持ち出し 河川 4 6 6 281 1,826 6.2 1. - 持ち出し 河川 5 3 3 36 分析中 分析中.5 - 持ち出し 天水 6 11 1 19 3,259~3,488 5.2~7. 14.8 2 持ち出し ため池 沢水 7 15 5 159 1,99~3,427 3.5~7.7 5.3 - 持ち出し 河川 8 22 2 18 3,336 7.5 14.6 2 持ち出し 沢水 9 4 1 144 分析中 分析中 3.6 持ち出し 1 31 4 128 分析中 分析中 7.2 8 持ち出し ため池 11 1 1 228 2,397 6.1 3.5 15 持ち出し 沢水 12 43 12 23 分析中 分析中 13.3 2 持ち出し 河川 13 2 1 114 分析中 分析中 - - 持ち出し 河川 このほかの3ほ場は 現在 調査に向けて現地と調整中 1 Bq/kg 超の米が検出されたほ場と近隣の未検出ほ場との比較 表 7 ほ場 玄米の区分 土壌放射性セシウム (Bq/kg) 土壌交換性カリ (mg K 2 O/1g) カリ施肥量 (K 2 O-kg/1a) 稲わら還元状況 用水 ア基準値超え 1,826 6.2 6. 持ち出し河川 A イ未検出 1,892 29.3 6. 全量還元河川 ウ未検出 2,234 28.7 6. 全量還元河川 ア基準値超え 2,783 5.6 3.2 持ち出し河川 B イ未検出 2,88 27.6 6.4 全量還元河川 19 ウ未検出 1,541 17.6 6.4 全量還元河川

5. 総括 24 年産の米の全袋調査の結果によると 基準超過は約 1, 万袋中わずか 71 袋と非常に限定的であり カリ施肥をはじめとした吸収抑制対策は非常に効果があったと考えられる また 作付制限 自粛区域で行った栽培試験の結果からも 23 年産で高い値が見られた地区でも 対策の実施により基準値を下回る米が生産できることが実証された 一方で 平成 23 年 12 月の中間報告以降 調査研究の結果 高濃度の放射性セシウムを含む米に関して 1 土壌から玄米への移行については 土壌中の放射性セシウムだけでなく 土壌中の交換性カリ含量や土壌のセシウム固定力が重要であること 2 対策としてはカリ施肥が重要となるが 放射性セシウムの吸収抑制の観点からは生育初期の交換性カリ含量を確保することが重要であり 速効性の塩化カリを基肥中心に施用することが基本となること 3 流入水から玄米への移行については ため池や水路等の水質調査の結果と併せて考えると 影響は限定的と考えられる また 土壌中の交換性カリ含量は水からの移行の抑制にも効果があることから 流入水からの影響を抑制する観点からも土壌中の交換性カリ含量の確保は重要であること 4 汚染した籾すり機等の利用による交差汚染も見られており 事故後初めて使用する際等には乾燥 調製等の機械の清掃なども重要であることなどが明らかになっている また 24 年産で超過が見られた地点の要因について調査したところ 土壌中の交換性カリ含量が低く 聞き取りでもカリ施肥が不十分であった地点が多かったことから こうした地域では適切なカリ施肥等の対策を行うことで 本年作は玄米中の放射性セシウム濃度の低減が可能と考えられる 25 年作については こうした知見を基に 農業現場の協力を得て 引き続き安全な米が生産されるよう吸収抑制対策の徹底を図りたい なお 玄米中の放射性セシウム濃度の基準値超過の発生には 様々な要因が複合的に関係しており 超過地点の要因の解析など残された課題もあることから 関係機関が協力して引き続き調査 要因の解明に当たることとしたい [ 協力機関 ] 福島県農業総合センター ( 独 ) 農業環境技術研究所 ( 独 ) 農業 食品産業技術総合研究機構 ( 独 ) 森林総合研究所 ( 独 ) 産業技術総合研究所 学習院大学 東京大学 2