微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Similar documents
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

基礎数学I

i

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

newmain.dvi

Note.tex 2008/09/19( )

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

: , 2.0, 3.0, 2.0, (%) ( 2.

DVIOUT

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

TOP URL 1

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

v er.1/ c /(21)

meiji_resume_1.PDF

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

2000年度『数学展望 I』講義録

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

i 18 2H 2 + O 2 2H 2 + ( ) 3K

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

Chap11.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

Acrobat Distiller, Job 128

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )



- II

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

all.dvi

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,



2011de.dvi

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

(2000 )

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

1

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

201711grade1ouyou.pdf

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

Chap9.dvi

notekiso1_09.dvi

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

Microsoft Word - 表紙.docx


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

II 2 II

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I

Untitled

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

untitled

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

量子力学 問題

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

TOP URL 1

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

Transcription:

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです.

i

ii 014 10

iii [note] 1 3

iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

v 1 1 1 1.1 1 1. 4 1.3 8 1.4 11 1.5 15 1 17 18.1 18. 1 4 3 5 3.1 5 3. 8 3.3 3 3 35 4 36 4.1 36 4. 39 4.3 4 4.4 44 4.5 47 4 51 5 5 5.1 5 5. 57 5.3 60 5.4 66 5.5 69 5.6 7 5.7 74 5 80 81 3 6 8 6.1 8 6. 86 6.3 9 6.4 95 6.5 96 6 10 7 103 7.1 103 7. 105 7.3 108 7 111 8 11 8.1 11 8. 115 8.3 118 8 1 9 13 9.1 13 9. 18 9.3 133 9.4 136 9 140 3 141

vi 4 10 14 10.1 14 10. 144 10.3 148 10.4 154 10 159 5 11 160 11.1 160 11. 166 11.3 170 11.4 173 11.5 176 11 180 1 181 1.1 181 1. 183 1.3 186 1.4 188 1 191 5 19 6 13 193 13.1 193 13. 00 13.3 05 13 11 A1 1 A 13 A3 15 17 43 A α N ν B β Ξ ξ Γ γ O o Δ δ Π π E ɛ, ε P ρ Z ζ Σ σ H η T τ Θ θ Υ υ I ι Φ ϕ, φ K κ X χ Λ λ Ψ ψ M μ Ω ω

3 5 3 3.1 a, b a b y = f(x) x a b x, y Δx, Δy Δx = b a, Δy = f(b) f(a) Δy Δx Δy Δx = f(b) f(a) b a x = a x = b f(x) y = f(x) A(a, f(a)), B(b, f(b)) x = a x = a + ( 0) f(x) Δy Δx = f(a + ) f(a) [note] (difference) Δ 3.1 f(x) =x (1) x = 1 x = () x = a x = a + () Δy Δx (1) Δy Δx = f() f( 1) ( 1) = f(a + ) f(a) = ( 1) 3 = (a + ) a =1 = a + =a + 3.1 f(x) (1) f(x) = 4x, x = x =+ () f(x) =x 5x, x = a x = a + y = f(x) x = a x = a + Δy y = f(x) A(a, f(a)), B(a +, f(a + )) Δx l

6 Δx = 0 l A l l A(a, f(a)) y = f(x) A f(a + ) f(a) 0 A y = f(x) 3.1 y = x A(, 4) y = x x = x =+ Δx = 0 lim Δx 0 Δy Δx 0 ( + ) 0 4 + 0 (4 + ) =4 4 f(x) x = a x = a + lim Δx 0 Δy Δx 0 f(a + ) f(a) y = f(x) x = a x = a f(x) f (a) 3.1 f (a) 0 f(a + ) f(a) y = f(x) x = a f (a) y = f(x)

3 7 (a, f(a)) 3. f(x) =x x 1 x =3 f (3) 0 f(3 + ) f(3) {(3 + ) (3 + ) 1} (3 3 1) 0 (4 + ) =4 0 y = x x 1 x =3 4 3. f(x) ( ) x (1) f(x) =x + x (x =) () f(x) =x 3 (x =1) (3) f(x) = 1 x (x = 1) (4) f(x) = x (x =4) t y = f(t) [m] Δy = f(3 + ) f(3) t =3 t =3+ Δt = [s] Δy Δt = f(3 + ) f(3) [m/s] 0 f (3) 3 [m/s] 3.3 t [m] = f(t) f (10) t =10[s] x a 0 lim {f(x) f(a)} x a x a f(x) x = a x a = f(x) f(a) x a 0 f(a + ) f(a) (x a) = f (a) 0=0

8 lim x a f(x) =f(a) f(x) x = a 3. f(x) x = a f(x) x = a 3.4 f(x) = x lim +0 f(0 + ) f(0) +0 +0 =1, lim 0 f(0 + ) f(0) 0 0 = 1 f(0 + ) f(0) lim 0 f(x) = x x =0 O y = x 3. y = f(x) I y = f(x) I y = f(x) I x = a I a a x = a f (a) f(x) f (x) 3.3 f (x) 0 f(x + ) f(x) f(x) f (x) y, dy dx, d dx f(x)

3 9 y = f(x) x [note] dy dx lim Δx 0 Δy dy Δx dx 3.5 y = x y (x + ) x 0 (x +x + ) x 0 (x ) =x, 3.3 dy dx =x, 0 (x + ) =x d dx (x )=x (1) y = x y =1 () y = x 3 y =3x 3.5 3.3 (x) =1,(x ) =x, (x 3 ) =3x n (x n ) = nx n 1 n =1 3.3 (1) k ( ) x k = kx k 1 ( x k+1 ) (x + ) k+1 x k+1 0 (x + ) (x + ) k x x k 0 { x (x + ) k x k} + (x + ) k 0 { x (x + } )k x k +(x + ) k 0 = x lim 0 (x + ) k x k = x kx k 1 + x k =(k +1)x k + lim 0 (x + ) k = x(x k ) + x k n = k +1 (x n ) = nx n 1 n (x n ) = nx n 1

30 y = c (c) 0 c c =0 3.4 x n n c (x n ) = nx n 1, (c) =0 3.6 ( x 4 ) =4x 3, ( x 5 ) =5x 4 3.5 f(x), g(x) cf(x), f(x) ± g(x) c (1) {cf(x)} = cf (x) () {f(x) ± g(x)} = f (x) ± g (x) (1) F (x) =cf(x) F (x + ) =cf(x + ) {cf(x)} F (x + ) F (x) 0 cf(x + ) cf(x) 0 {cf(x)} = cf (x) f(x + ) f(x) = c lim 0 = cf (x) () F (x) =f(x)+g(x) F (x + ) =f(x + )+g(x + ) {f(x)+g(x)} F (x + ) F (x) 0 {f(x + )+g(x + )} {f(x)+g(x)} 0 0 f(x + ) f(x) + lim 0 g(x + ) g(x) = f (x)+g (x) {f(x)+g(x)} = f (x)+g (x) {f(x) g(x)} = f (x) g (x)

154 4 10.11 f(x) ( ) (1) f(x) =x 3 +6x +3x (x = 1) () f(x) =x 4 (x =1) 10.4 f(x) c 0 x f(x) =f(0) + f (0) 1! x + f (0)! x 0 f (n+1) (c) (n + 1)! f(x) f(0) + f (0) 1! x + + f (n) (0) n! x + f (0)! x n + f (n+1) (c) (n + 1)! x n+1 0 x + + f (n) (0) n! x n x n+1 f(x) n f(x) 10.9 cos x cos x =1 x! + x4 4! +( 1) n xn (n)! + cos x cos x 1 x! x =0. cos 0. cos 0. 1 0.! =0.98 0.98006 10.5 I f(x) = 1+x 1.08 3

10 155 f(x) = 1+x f (x) = 1 (1 + x) 1 f (x) = 1 4 (1 + x) 3 f(0) = 1 f (0) = 1 f (0) = 1 4 f(x) = 1+x 1+x 1+ 1 x 1 8 x x =0.08 1.08 1.08 1+ 1 0.08 1 8 0.08 1.039 1.0393 10.1 f(x) ( ) 3 (1) f(x) =e x ( 4 e ) () f(x) =log(1+x) (log1.1) (3) f(x) = 1 ( ) 1 1+x 0.96 10.6 II (1) f(t) = 1+t () (1) L, a, x a x L ( L + x + a ) ( L + x a ) ax L (1) f (t) = t 1+t, f (t) = 1 ( 1+t ) 3 f(t) f(0) + f (0)t + 1 f (0)t =1+ 1 t () 1 L ( x ± a ) 0 (1)

156 4 L + ( x ± a ) { ( = L 1+ 1 x ± a )} L { L 1+ 1 { ( 1 x ± a )} } L = L + 1 ( x ± a ) L ( L + x + a ) ( L + x a ) { ( 1 x + a ) ( x a ) } L = ax L [note] 10.13 (1) f(t) = 1 t () (1) x, R x R R R x x R f(x) = 1 1 x f(0.) = 1 =1.5 1 0. n =1 3 f n (x) f(x) = 1 1 x x =0. 1.5 f 1 (x) =1+x 1. 0.05 f (x) =1+x + x 1.4 0.01 f 3 (x) =1+x + x + x 3 1.48 0.00 sin x sin x f(x) =sinx sin x = x x3 3! + x5 5! x7 7! + f(x) =sinx 1 3 5 f 1 (x) =x, f 3 (x) =x x3 3!, f 5(x) =x x3 3! + x5 5!

10 157 y = f 1 (x), y = f 3 (x), y = f 5 (x) n y = f n (x) y =sinx n f(x) f n (x) = R n+1 (x) = f (n+1) (c) (n + 1)! x n+1 R n+1 (x) 10.10 sin x 5 sin 1 4 sin x x x3 3! + x5 5! sin 1 1 1 3! + 1 5! 0.8417 (sin x) (6) = sin x sin x 1 R 6 (1) = sin c 6! 1 6 < 1 6! =0.0013 10.14 cos x 6 cos 1 5

193 6 1 1 13 13.1 z = f(x, y) xy xy f(x, y) f(x, y) 0 z = f(x, y) xy xy V n k k ΔS k (k =1,,...,n) (x k,y k ) f(x k,y k ) ΔS k f(x k,y k ) ΔS k n f(x k,y k ) ΔS k k=1 V

194 6 V n lim n k=1 n f(x k,y k ) ΔS k 1 V 1 f(x, y) 0 f(x, y) (x k,y k ) 1 f(x, y) 1 f(x, y) f(x, y) ds f(x, y) f(x, y) 13.1 k (k =1,, 3,...,n) k (x k,y k ) k ΔS k f(x, y) f(x, y) ds n k=1 n f(x k,y k ) ΔS k n

13. I k (1) kf(x, y) ds = k f(x, y) ds () {f(x, y)+g(x, y)} ds = f(x, y) ds + g(x, y) ds 13 195 13.3 II 1, f(x, y) ds = f(x, y) ds + 1 f(x, y) ds f(x, y) 0 f(x k,y k )ΔS k 0(k =1,,...,n) f(x, y)ds 0 13.3, f(x, y) 0 f(x, y)ds f(x, y)ds 13.1 a x b, ϕ 1 (x) y ϕ (x) f(x, y) 0 f(x, y) ds z = f(x, y) z a x b (x, 0, 0) x A(x)

196 6 f(x, y) ds = b a A(x) dx A(x) z = f(x, y) x y y = ϕ 1 (x) y = ϕ (x) A(x) = f(x, y) ds = b ϕ(x) ϕ 1(x) A(x) dx = f(x, y) dy b a a ϕ 1(x) { } ϕ(x) f(x, y) dy dx f(x, y) c y d, ψ 1 (y) x ψ (y) { d } ψ(y) f(x, y) ds = f(x, y) dx dy c ψ 1(y) f(x, y) 0 x, y f(x, y) dxdy

13 197 13.4 f(x, y) (1) = {(x, y) a x b, ϕ 1 (x) y ϕ (x)} { b } ϕ(x) f(x, y) dxdy = f(x, y) dy dx a ϕ 1(x) () = {(x, y) c y d, ψ 1 (y) x ψ (y)} { d } ψ(y) f(x, y) dxdy = f(x, y) dx dy c ψ 1(y) ={(x, y) a x b, c y d} { b } d { d } b f(x, y) dxdy = f(x, y) dy dx = f(x, y) dx dy a c c a 13.1 (x y +x) dxdy, ={(x, y) 0 x, 1 y } y y =1 y = x x =0 x = { } (x y +x) dxdy = (x y +x) dy dx 0 1 { [ = x y ] [ ] } +x y dx 0 ( = 3 +x) x dx 0 = 3 [ x 3 ] [ + x 3 0 1 ] 0 1 =4+4=8

198 6 13.1 (1) () (3) (x + y ) dxdy, = {(x, y) 0 x 1, 1 y } e x+y dxdy, = {(x, y) 0 x, 0 y 1} sin(x + y) dxdy, = { (x, y) 0 x π, 0 y π } 1 ={(x, y) a x b, ϕ 1 (x) y ϕ (x)} y ={(x, y) c y d, ψ 1 (y) x ψ (y)} x 13. (1) (y x) dxdy, = {(x, y) 1 x, x y x} () { ydxdy, = (x, y) 0 y π }, 0 x cos y (1) 1 x y = x y =x y } (y x) dxdy = = = { x 1 1 1 x [ (y x) 3 3 (y x) dy ] x x dx 1 3 x3 dx = 1 [ x 4 3 4 dx ] 1= 5 4

13 199 () 0 y π x =0 y x =cosy x } ydxdy= = π { cos y 0 π 0 [ y x [ = y sin y 0 ] cos y ] π 0 0 = π [ cos y ydx dy = π 0 ] π 0 dy π 0 sin ydy = π 1 y cos ydy 13. (1) () (3) (4) xy dxdy, = {(x, y) 0 x 1, 1 y x } xdxdy, = {(x, y) 0 y π, 0 x sin y} x dxdy, = {(x, y) 1 x, 0 y x} x + y x + ydxdy, = {(x, y) 0 y 1, 0 x y} f(x, y) = {(x, y) 0 x, 0 y 1 } x +1 f(x, y) dxdy = 0 { 1 0 x+1 } f(x, y) dy dx 1 y = 1 x +1 x x = y + ={(x, y) 0 y 1, 0 x y +} 1 { y+ } f(x, y) dxdy = f(x, y) dx dy 0 0

43 60 168 194 160 n 154 75 160 19 108 1 186 187 61 15 61 163 16 4 159 130 7 1 84 89 36 34 96 37 47 49 47 47 47 11 11 1 14 18 164 18, 19 19 8 9 18 54, 181 54, 181 15 54, 181 54, 181 54, 181 185 19 96 84 46 18 1 136 1 169 3 33, 171 17 147 147 157 75 13 44 4 43 18 6 41 40 61 09 164 18, 19 1 8 144 160 188 84 149 1 77 0 9 16 1 45, 1 83, 194 00 84, 86 86 84 194 174 6 77 6, 174 174 15 89 114 177 177 46 164 54

44 4 7 7, 108 77 60 168 n 14 134 39 4 133 106 105 163 160 9, 115 160 8 148 148 150, 153 150, 153 149, 153, 15 133 8 1 13 3 160 159 75 75 0 1 9 9, 0 9, 0 75 84, 86 1 70 6 6 9 84, 11 57 86, 11 95, 118 7 5, 14 58 5 144 146 185 185 6 00 167 166, 167 166 167 180 140 148 148 154 150 150 149 1 11 8 8 13 103 01, 03 01, 03 189 196, 165 58 14

014 10

C 014 014 1 4 1 1 1 4 11 10 0071 03 365 8341 FAX 03 364 8709 ttp://www.morikita.co.jp/ Printed in Japan ISBN978 4 67 0571 0