62, Corrosion Simulation Technology Based on Electrolyte Thermodynamics Kohtaroh Tanaka Simulation Technology Ltd. Corrosion behavior of

Similar documents
Application of Solid Electrolyte Sensors to Hot Corrosion Studies Nobuo Otsuka* *Iron & Steel Research Laboratories, Sumitomo Metal Industries, Ltd. C

10-7 cm/ 50cm 10-6 cm/ 2,4-D 2 ph

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

温泉の化学 1

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

51-4特-10.indd

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *

渡辺(2309)_渡辺(2309)

untitled


第1章 溶接法および機器

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

untitled

2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO

資源と素材

X線分析の進歩36 別刷

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

1 1) () ( ) 3 O S Cl 3 1

RAA-05(201604)MRA対応製品ver6

I : History of Stainless Steel and Its Production

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

δδ 1 2 δ δ δ δ μ H 2.1 C 2.5 N 3.0 O 3.5 Cl 3.0 S μ

Research Status and Unsolved Problems in Rusting of Iron and Steels* Toshihei Misawa** **Department of Metallurgical Engineering, Muroran Institute of

Template For The Preparation Of Papers For On-Line Publishing In JSME

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

(Jackson model) Ziman) (fluidity) (viscosity) (Free v


腐食センターニュースNo.040

Dominated Territory Vuchic 4 Bouladon , iii Vol.2 No Spring 15

SPring8菅野印刷.PDF

J. Jpn. Inst. Light Met. 65(6): (2015)

特-7.indd

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

Netsu Sokutei 19 (4) Thermal Transitions and Stability of Fatty Acid-Containing and Defatted Bovine Serum Albumin (BSA) Michiko Kodama, Shinji

UDC : ' : '24' : '24'26' : : A Study of Condition of Pits Formation and Their Fe

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst


スケーリング理論とはなにか? - --尺度を変えて見えること--

00) î âûë¨ìx.pdf

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

7章 構造物の応答値の算定

H1-H4

物理化学I-第12回(13).ppt


Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

技報65

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

untitled

12) NP 2 MCI MCI 1 START Simple Triage And Rapid Treatment 3) START MCI c 2010 Information Processing Society of Japan

”R„`‚å−w‰IŠv†^›¡‚g‡¾‡¯.ren

STSNJ NL

00) îSìyçzï®äwÇÃäÓëb-1.pdf

Quantitative Relationship between SAR and Temperature Rise inside Eyeball in a Realistic Human Head Model for 1.5 GHz-Microwave Exposure Kiyofumi Taka

CVM CVM 1 1 Revealed Preference Stated Preference CVM CVM CVM CVM NOAA 3 CVM 4 5 CVM 2.2 CVM CVM CVM2 CVM 2 Vol.3 No Spring 003


untitled

広報あぐい 2014年1月15日号

人文学部研究年報12号.indb

環境負荷低減に向けた低温接合技術

特-4.indd

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

The Plasma Boundary of Magnetic Fusion Devices

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

36 th IChO : - 3 ( ) , G O O D L U C K final 1

JFE.dvi

放射線化学, 92, 39 (2011)

Corrosion Wear of Alloy Tool Steel (SKD 11) Coated with VC and Precipitation Hardening Stainless Steel (SUS 630) in Sodium Chloride Aqueous Solution T

23 A Comparison of Flick and Ring Document Scrolling in Touch-based Mobile Phones

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

報告書 H22-2A-09

CuSO POINT S 2 Ni Sn Hg Cu Ag Zn 2 Cu Cu Cu OH 2 Cu NH CuSO 4 5H 2O Ag Ag 2O Ag 2CrO4 Zn ZnS ZnO 2+ Fe Fe OH 2 Fe 3+ Fe OH 3 2 Cu Cu OH 2 Ag Ag

SEJulyMs更新V7

And Business

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Table 1. St-VAc blockcopolymers Table 2. Stability of dispersion of blockcopolymers in unsaturated polyester

Fig. 1 Structure of a Sebaceous Follicle (Ref.1).

Microsoft PowerPoint - S-17.ppt

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

2013_autumn.indb

5b_08.dvi

微粒子合成化学・講義

03.Œk’ì

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru


* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

Transcription:

62, 310 316 2013 Corrosion Simulation Technology Based on Electrolyte Thermodynamics Kohtaroh Tanaka Simulation Technology Ltd. Corrosion behavior of materials in aqueous solution can be quantitatively analyzed by simulation with electrolyte thermodynamic model, electrochemical kinetic model on material surface and mass-transfer and adsorption models between solution and material surface. This report introduces thermodynamic analysis method by real solution stability diagram, general corrosion rate estimation method by simulated polarization curves and localized corrosion susceptibility evaluation method by repassivation potential with concrete validation examples. Key words : simulation, electrolyte, thermodynamic model, electrochemical, kinetic model, mass-transfer, adsorption, stability diagram, corrosion rate, repassivation potential 1. はじめに CSP Corrosion Simulation Program CSP 1995 Amoco Chevron DuPont Exxon GRI ICI Mobil Shell 9 OLI Systems Inc. Pourbaix ph 1 Nernst 2 a G Gibbs X X i A i Y e e 1 E G 0 Y X G 0 X i GA 0 i RT ln a Y X ln a X i ln a Ai /F e 2 Pourbaix ph H OH 1 H 2 S a 2. 腐食現象の熱力学平衡論的解析 2.1 実在溶液安定領域線図 1),2) 236 0004 1 1 1 1 1 1 Fukuura, Kanazawa-ku, Yokohama, 236 0004 Japan 1 H2S Fe

Vol. 62, No. 9 311 2Metal Activity 1E-6 2.2 安定領域線図と腐食速度の関係 4 300 H 2 O a a Fe Driving Force Partridge 3 3Metal Activity 1E-2 H 2 O b O 2 a b Fe Fe H 2 S Fe Fe 3 O 4 ph FeS FeS 2 metal activity metal activity Pourbaix 1 10 6 metal activity 2 metal activity 1 10 6 3 1 10 2 S S 8 2.3 合金の安定領域線図 2 Fe Ni Cr NiFe 2 O 4 FeCr 2 O 4 NiCr 2 O 4 3. 全面腐食速度の予測モデル 4) 3.1 分極線図のシミュレーション合成と混成電位 i A i C 4 300

312 i corr Butler - Volmer Kinetics 5 CO 2 18 Fe 3 Fe BDD Bockris-Drazic- Despic OH i Fe i 0 Fe exp α Fe F E E 0 Fe /RT 3 i 0 Fe i Fe a OH a Oc H2 / 1 K OH a OH α Fe i 0 Fe i Fe E 0 Fe Fe ck OH E 0 Fe K OH α Fe i Fe 3 ph 6 Na 2 SiO 3 7 9 10 HNO 3 C-22 Rate [g/(m 2 d)] 5 4 3 2 1 0 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 N Na 2SiO 3 6 7 Fe - 5 Fe 8

Vol. 62, No. 9 313 100 Rate (mm/y) 10 1 0.1 Sridhar et al. (1987) 20 wt% HNO3, 353 K Calculated 0.01 0 1 2 3 4 5 wt.% HF 10 8020 wt HF C 22 9 HF HNO 3 HF HF 2 HF 11 12 NO 3 HF NO 3 HF 5,6 3.2 シミュレーション推算値と実測値の比較 2 N 2 N 2 O 2 ppb H O 2 11 HF 12 1.6 HF

314 Scan Rate Scan Rate 3.3 流れと物質移動の取り扱い 7) 2 3 PorosityTortuosity 19) 3.4 スケール生成の影響 FeCO 3 FeS CaCO 3 CaSO 4 FeCO 3 FeS 811 3.5 混合溶媒, 非水溶媒溶液環境への拡張 65 mol 4. 局部腐食予測モデル 12) 4.1 再不動態化電位 13 M MX MO 1 5 4 i rp l n ξ FErp k n α FErp 1+ 1 θ exp = θ exp i p irp RT irp RT 4 E rp i rp i p kα n l kl 14 316 15 Fe Ni Cr Mo W N 15 95 13 13

Vol. 62, No. 9 315 Erp (SHE) 1.0 0.8 0.6 0.4 0.2 0.0 0.42 M Cl 3 M Cl 4 M Cl -0.2 0.0001 0.001 0.01 0.1 1 10 a NO3 Erp (SHE) 1.0 0.8 0.6 0.4 0.2 0.0 80 C 95 C 105 C -0.2 0.10 1.00 10.00 acl 125 C 150 C 175 C 14 Cl NO 3 17 Al Erp(SHE) x(cr) 1.0 0.8 0.6 0.4 0.2 0.0-0.2-0.4 0.0001 0.001 0.01 0.1 1 10 a Cl 15 95 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 Alloy 600 0.04 Carbide = Cr 7 C 3 0.02 Data: Was and Kruger (1985) 0.00 0 200 400 600 800 1000 Distance from grain boundary, nm 16 Cr 4.2 材料熱履歴の影響 Cr Mo Alloy 600 Cr 16 22, exp 22, generalized 276, exp 276, generalized 625, exp 625, generalized 825, exp 825, generalized 690, generalized 600, exp 600, generalized 800, generalized 254SMO, exp 254SMO, generalized AL6XN, exp AL6XN, generalized 2205, generalized 316L, exp 316L, generalized 304L, generalized s-13cr, exp s-13cr, generalized T=973 K, t=1h T=973 K, t=1h, cal T=973 K, t=10h T=973 K, t=10h, cal T=973 K, t=30h T=973 K, t=30h, cal T=973 K, t=100h T=973 K, t=100h, cal T=873 K, t=250h T=873 K, t=250h, cal T=1073 K, t=0.42h T=1073 K, t=0.42h, cal 14 4.3 局部腐食の進展速度 3 17 Al X Y Z 3 15 3 16 18 FeCl 3 C-276 m Worst Case Scenario

316 100 Int. Nickel Co. (1972) 298 K Rate (mm/y) 10 1 0.1 Int. Nickel Co. (1972) 303 K Int. Nickel Co. (1972) 338 K Inco Alloys Int. (1986) 323 K Inco Alloys Int. (1986) 348 K 298 K, cal. max. pit rate 303 K, cal. max. pit rate Parameters Corrosion Potential Pitting Critical Potential SCC 0.01 323 K, cal. max. pit rate 338 K, cal. max. pit rate Strain Rate 0.001 0 1 2 3 4 5 6 m (FeCl 3 ) 348 K, cal. max. pit rate Time (Environmental Variables) 19 18 FeCl 3 C- 276 Con servative 4.4 応力腐食割れ発生予測への応用 19 Det Norske Veritas U.S.A.Inc. 17 5. おわりに 3.2 参考文献 1 A. Anderko et al., Corrosion, 53, 43 1997. 2 A. Anderko et al., Shreir s Corrosion 4th edition, 2, 1591, Amsterdam Elsevier 2010. 3 Partridge, E. et al., Trans. Am. Soc. Mech. Eng., 61, 597 1939. 4 A. Anderko et al., Corrosion, 57, 202 2001. 5 M. A. Blesa et al., Chemical Dissolution of Metal Oxides, CRC Press, Boca Raton, FL, 1994. 6 N. Sridhar et al., Materials Performance, 26 10 17 1987. 7 J. Newman et al., Electrochemical Systems, 3rd edition, Prentice Hall, Englewood Cliffs, NJ, 2004. 8 S. Nešić et al., Corrosion, 59, 616 2003. 9 S. Nešić et al., Corrosion/2005, paper 05556, NACE International, Houston, TX, 2005. 10 W. Sun et al., Corrosion/2007, paper 07655, NACE International, Houston, TX, 2007. 11 A. Anderko et al., Corrosion/99, paper 31, NACE International, Houston, TX, 1999. 12 A. Anderko et al., Corrosion Science, 46, 1583 2004. 13 A. Anderko et al., Corrosion Science, 50, 3629 2008. 14 A. Anderko, et al., US Department of Energy, proect DE- FC36-04GO14043 final report, September, 2007. 15 G. Engelhardt et al., Corrosion Science, 46, 1159 2004. 16 A. Anderko, et al., Corrosion Science, 46, 1583 2004. 17 DET NORSKE VERITAS, Proposal for Joint Industry Proect, 2010. 18 A. Anderko et al., Shreir s Corrosion 4th edition, 2, 1609, Amsterdam Elsevier 2010. 19 A. Anderko et al., Shreir s Corrosion 4th edition, 2, 1618, Amsterdam Elsevier 2010. 2013 3 31 要 旨 キーワード