untitled

Similar documents
1

Contents

工学的な設計のための流れと熱の数値シミュレーション

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Untitled

A03-2.dvi

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

.....Z...^.[ \..

MUFFIN3

First Aerodynamics Prediction Challenge (APC-I) 143 First Aerodynamics Prediction Challenge (APC-I) 2015/7/3 TAS MEGG3D 格子による解析 M = 0.847, α = M

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

3. 高 速 飛 行 時 の 空 力 性 能 予 測 高 速 巡 航 時 の 空 力 性 能 予 測 では 物 体 表 面 の 非 常 に 薄 い 乱 流 境 界 層 の 小 さなスケールの 乱 流 非 定 常 変 動 は 解 かず 乱 流 モデルを 用 いた 圧 縮 性 RANS (Reynold

1.1 1 A

mains.dvi


() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS


(1)

空力騒音シミュレータの開発

KENZOU Karman) x

untitled

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

LOL ONNRION RRISIS OF RQUK RSPONS OF KO ROUN akashi kiyoshi, ept. o ivil ngrg., Kumamoto Univ., Kunihiko Fuchida, ept.


IPSJ SIG Technical Report Vol.2013-ARC-207 No.23 Vol.2013-HPC-142 No /12/17 1,a) 1,b) 1,c) 1,d) OpenFOAM OpenFOAM A Bottleneck and Cooperation

第 40 回流体力学講演会 / 航空宇宙数値シミュレ ション技術シンポジウム 2008 論文集 -Re Validation of -Re Transition Model and Modeling of Crossflow Instability Yuto Watanabe, Takashi Mi

 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

untitled

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

オープン CAE 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3) [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 新宿 2013/11/10 数値流体力学 輪講第 4 回 1

TM

1-22_tsubokura.indd

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

8 宇 宙 航 空 研 究 開 発 機 構 特 別 資 料 JAXA-SP 表 1 外 部 境 界 条 件 velocity B.C. pressure B.C. X- 一 様 流 ノイマン X+ 対 流 流 出 ディリクレ Z- スリップ ノイマン Z+ 対 流 流 出 ディリクレ

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

修士論文


[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA

s s U s L e A = P A l l + dl dε = dl l l

平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2

Contents 1 Jeans (

2 (Preface) (potential flow) viscosty ( 0 (vorticity) (boundary layer) (shearing stress) (frictional stress) (frictional drag)) (laminar flow) (turbul

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

04-04 第 57 回土木計画学研究発表会 講演集 vs

Preface) compressible fluid dynamics) ) density) Reynolds number; ) Mach number) 0.3 5% 5% 300km M = km M = 0.41 M = shock wave) 0 wave

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

untitled

kokyuroku.dvi

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box

untitled


tr-1441.p65

(2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smola

2 q effective mean dynamic pressure [Pa] q cr critical value of dynamic pressure [Pa] q CW heat flux for cold wall [J/m 2 ] r th throat radius [m] x a

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

200708_LesHouches_02.ppt

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

空間多次元 Navier-Stokes 方程式に対する無反射境界条件

?

鉄鋼協会プレゼン

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

73

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -

1

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

96 7 1m = N 1A a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

untitled

untitled


/ 30 / - 2 -

Jpn. Soc. Atom. Env. 52(1): (2017)

ohpr.dvi

2

<4D F736F F D B B BB2D834A836F815B82D082C88C60202D B2E646F63>

pdf

.I.v e pmd

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

: 1g99p038-8

Research on decision making in multi-player games with imperfect information

116 宇宙航空研究開発機構特別資料 JAXA-SP cc ww1 = cc bb1 κκ 2 + (1 + cc bb2), σσ cc ww2 = 0.3, cc ww3 = 2, cc vv1 = 7.1, cc vv2 = 5 (4.7) 図 1 翼型モデルの外観 4. プリプ



133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

学習内容と日常生活との関連性の研究-第3部-第9章


FFT

: LES Energy RANS Kawai & Lele JCP (2010) Wavenumber Accuracy LES, DNS RANS 1970 s Efficiency


Study on Heat Transfer and Flow Characteristics of a Bank of Tubes with Tube-to-Baffle Leakage Z 29 < Z < 55 R 0.4 < R < 0.75 RANS This study investig

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Transcription:

CFD JAXA CFD CFD Navier-Stokes -1- -2-1

CFD CFD Navier-Stokes 1. 2. 2,500,000 CFD Copyright Boeing CFD Boeing B777 HP -3- -4-2

CFD European Transonic Wind tunnel (-163 ) JAXA 2mx2m CFD (Computational Fluid Dynamics) CFD CFD E. N. Tinoco AIAA 98-2512 -5- -6-3

: *=10 7 10 8, 0.8, 0.15 C 1/300,000C < L < 50C M =0.75, Re=6.5x10 6 0.02% C 2% C Re = )()() ( ) = ( ) () Navier-Stokes Stokes Navier-Stokes 5 ρ ρu Q = ρv, ρw E ρu 2 ρu + p τ xx F = ρvu τ xy, ρwu τ zx T ρhu ( τ u) x k x Q F G H + + + = 0 t x y z ρv ρuv τ xy 2 ρv + p τ yy G =, ρwv τ yz T ρhv ( τ u) y k y ρw ρuw τ xz H = ρvw τ yz 2 ρw + p τ zz T ρhw ( τ u) z k z -7- -8-4

Reynolds Navier-Stokes(RANS) - - - 2 6 7 Euler 5 1 2 Euler Prandtl-Glauret TRANAIR(1989) Boeing 90CFD TRANAIR F. T. Johnson et. al AIAA 2003-3439 -9- -10-5

CFD CFD CFD CFD - E. N. Tinoco AIAA 98-2512 F. T. Johnson et. al AIAA 2003-3439 CFD CFD CFD Navier-Stokes -11- -12-6

CFD CFD Navier-Stokes Navier-Stokes Stokes 15 1992 6 10 CFD ONERA M5 3 2 VP2600, VP400 43 523 5 100 15 CFD Capability Computing ONERA M5-13- -14-7

5 2001 (2001. 6) ONERA M5 650 98 SGI Onix3400 14CPU 12 11 - ONERA M5 NSIII NSIII AIAA Drag Prediction Workshop II (2003) DLR-F6 1% 0.5% Fujitsu PRIMEPOWER2500 100CPU 8001300 10 1 2 10 10% 5% 1 DLR-F6-15- -16-8

AIAA Drag Prediction Workshop 3 (2006) JAXA 1000 1 3003000 3-17- -18-9

0.5% 1 Capability Computing 1000 1000 C CD D 0.0295 0.0290 0.0285 0.0280 0.0275 0.0270 CFD CFD Navier-Stokes 0.0265 UPACS WB UPACS FX2B 0.0260 TAS WB TAS FX2B 0.0255 0.0E+00 1.0E-05 2.0E-05 3.0E-05 4.0E-05 5.0E-05 6.0E-05 N ^(-2/3) 1/N^(2/3) -19- -20-10

CFD CFD CFD 3 RANS RANS 5000 B747 Airbus A300-21- CFD,, 3 2-22- 11

CFD CFD European EUROLIFT 233 AIAA 2004-767 NASA Langley CFD Web JAXA CFD 100 Trapezoidal wing models JAXA CFD Code : TAS (Tohoku Univ. Aerodynamic Simulation Code) 6 Spalart-Allmaras 60m/s Re=2.1x10 6 FTFHLD JAXA NSIII (PRIMEPOWER HPC2500) Upper Surface Unstructured hybrid mesh Lower Surface -23- JAXA wind tunnel model B.L. transition locations (AoA=10deg) -24-12

(C L -α) CFD 3 2.5 C L 2 Exp. (Corrected) Comp. (Fully Turb.) 1.5 0 5 10 15 20 Angle of attack Exp. α=10.55 Comp.(w/oFTF) α=10 Exp. α=15.54 Comp.(w/oFTF) α=15-25- -26-13

CFD CFD Navier-Stokes 10,000-27- E. N. Tinoco AIAA 98-2512 -28-14

vs Kriging ANOVA (analysis of variance) SOM (self-organizing map) -29- -30-15

CFD AIAA Applied Aerodynamics Conf. 2005 MSC. NASTRAN / Navier-Stokes solver TAS) Block Fuel Aerodynamic Model (Unstructured mesh) Adaptive Range Multi-Objective Genetic Algorithm Structural Model (Wing box: Shell elements) Modified PARSEC : 9 design variables * 3 cross sections : 6 spanwise locations : 2 positions at kink and tip 35-31- -32-16

1 1 ARMOGA Individual # 1 Individual # 8 Static Aeroelastic Analysis Module Euler comp. @ =Const. No Subsonic Static Analysis Displacement Converge? Yes Subsonic @ 3conditions Euler eq. N-S eq. 11 3000 CFD Aerodynamic Model ite=ite+1 ite=1 Transonic Euler comp. @ =Const. No Static Analysis Displacement Converge? Yes Transonic @ 5conditions Structural Model if (ite=1) then Strength/Flutter Optimization endif Euler comp. @ =Const. Static Analysis Displacement Converge? Yes Off-design @ 3conditions N-S S Comps. - Evaluation of Three Objective Functions Block Fuel Max Takeoff Weight C D divergence (MDD) -Check of Constraints MLD Fuel Quantity Block Fuel Module Individual # i Off-design No -33-3 : Nondominated solution 4counts initial solution C D divergence Block Fuel [kg] 10kg 50kg Max Takeoff Weight [kg] -34-17

SOM Block Fuel Max Takeoff Weight C D Divergence N-S N-S1 N-S 100 CFD -35- -36-18

/NEDO Navier-Stokes CFD 10 RANSCFD CFD 100 RANS Large Eddy Simulation -37-19