QMI13a.dvi

Similar documents
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

QMI_10.dvi

30

II

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

IA

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

QMI_10.dvi

QMI_09.dvi

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ



1 c Koichi Suga, ISBN

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

i

phs.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

II

KENZOU Karman) x


2000年度『数学展望 I』講義録

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

Maxwell

DVIOUT

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1


t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

DVIOUT-fujin

i

Chap11.dvi

- II

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

Schrödinger I

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

newmain.dvi

Korteweg-de Vries

TOP URL 1

2011de.dvi

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

Maxwell

notekiso1_09.dvi

all.dvi

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)


(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

構造と連続体の力学基礎

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

II 2 II

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

Planck Bohr

all.dvi

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

201711grade1ouyou.pdf

ssp2_fixed.dvi

A

Part () () Γ Part ,

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

i Γ

i 18 2H 2 + O 2 2H 2 + ( ) 3K

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Gmech08.dvi

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10



TOP URL 1

『共形場理論』

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Transcription:

I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1

(d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c) (d) (e) Dirac bra-ket (f) 4. (a) (b) 5. (a) Schrödinger (b) Heisenberg Heisenberg 6. Schrödinger (a) 2

(b) (c) Bloch (d) 7. : 3

[ ] 1. L. I. Schiff; Quantum Mechanics McGraw-hill Kogakusha, okyo (1955) :, ( ) J. J. Sakurai; Modern Quantum Mechanics (Ed. S. F. uan) Benjamin, Menlo Park (1985) :, A. Messiah; Quantum Mechanics (2 vol.) Dover, New York (1981) :, P.A.M. Dirac : he Principles of Quantum Mechanics (4th ed.) Oxford-Misuzu, (1958) :, 2. 1969 R. P. Feynman, R. B. Leighton, M. L. Sands : he Feynman lectures on Physics III Quantum Mechanics (Addison-Wesley, 1965) 4

2010 3. I, Schiff J. J. Sakurai 4.. 5

1 1.1 L U u= L 3 u (1) u( ) 0 ρ(ν, )dν (2) ν ν +Δν ρ(ν, )Δν (3) 1.2 Rayleigh - Jeans 1.2.1 Φ(r) e ik r (4) 2πν = c k ( ) (5) L k = ( ) 2π (n x,n y,n z ) (6) 2L n x,n y,n z =1, 2, 3, 4,... (7) 1.2.2 ρ(ν, )Δν = g(ν) <ɛ>δν (8) g(ν) ν ν +Δν <ɛ> g(ν) (5) (6) 6

( c ) 2 ν 2 = (n 2 2L x + n 2 y + n 2 z) νx 2 + νy 2 + νz 2 (9) Δn i = 1 Δν =(c/2l) (i = x, y, z) (10) Δν = 1 Δn i =(2L/c) (11) g(ν)δν = (ν ) (ν ) = ν (1/8) 2 (2/c) 3 = (4πν 2 ) (Δν) (1/8) 2 (2/c) 3 = 8πν2 Δν. (12) c3 (11) L =1 1/8 ν 2 < ɛ> ɛ e ɛ/kb ɛe ɛ/k B dɛ <ɛ>= e ɛ/k B dɛ = k B (13) Rayleigh-Jeans ρ(ν, )=g(ν) <ɛ>= 8πν2 c 3 k B. (14) 1.2.3 Rayleigh - Jeans 1.3 Wien Wien displacement law ( ) 1.3.1 P = 1 3 u = 1 U 3 (15) 7

) < xx > = E x D x 1 2 E D + H xb x 1 2 H B (16) = 1 { 1 3 2 E D + 1 } 2 H B (17) = 1 3 u (18) xx Maxwell xx x x Stephan - Boltzmann law u = (const.) 4 a 4 (19) ) ΔS = ΔU + P Δ (20) 2 S 2 S = 1 du d, (21) = 4 du 3 d 4u 3 2. (22) du d =4u. (23) L ν 1 L = 1/3. (24) ( ) ν = 1 S 3 ν. (25) ( ) U S ( ) U S U = u= a 4 (26) ( ) = a 4 +4a 3, (27) S = P = 1 3 u = 1 3 a 4. (28) ( ) = 1 S 3. (29) 8

1.3.2 +Δ ν ν + δν +Δ +Δ ν ν +Δν δν δν +Δ(δν) ρ(ν, )δν = P Δδν+( +Δ )ρ(ν +Δν, +Δ )(δν +Δ(δν)). (30) (25) (29) Δ = Δ 3, (31) Δν = ν Δ 3, (32) Δ(δν) = δν Δ 3, (33) ρ(ν +Δν, +Δ ) = ρ(ν, )+ ρ ρ Δν + Δ (34) ν = ρ(ν, ) ν ρ Δ 3 ν ρ Δ 3. (35) ρδν= ρ 3 δνδ +( +Δ ) {ρ ( ν 3 ν ρ 3 ν + ρ 3 ρ(ν, )= (37) m=0 n=0 ρ ν + 3 ) } ( ρ Δ δν 1 Δ ). 3 (36) = ρ, (37) a mn ν m n (38) m + n 3 = 0 (39) ( ν ) m ρ = ν 3 a m (40) m=0 ν 3 φ( ν ). (41) ρ(ν, )=ν 3 φ( ν ). (ρ(ν, ) ) (42) 9

1.3.3 Displacement law Stephan - Boltzmann law (42) ρ(ν, ) ν max ν max (42) displacement law 1.3.4 Wien ρ(ν, )=( ν N(ν)) (ν F (ν)) ρ(ν, )=F(ν)N(ν). (43) E E = f(ν) (44) N(ν) = (const.) e f(ν)/kb (45) ρ = F (ν)e f(ν)/kb = ν 3 φ( ν ). (46) F (ν) = (const.) ν 3, (47) f(ν) = λν. (48) ρ(ν, ) = (const.) ν 3 e λν/kb. (49) ρ(ν, )= 8πν3 c 3 k Bβe βν/. (β = λ/k B ) (50) Wien 1.3.5 Wien Rqyleigh-Jeans Maxwell 10

1.4 Planck S (Rayleigh-Jeans) U = k B ( ) (51) ( ) S U ( 2 ) S U 2 = k B U = 1, (52) = k B U 2 (53) (Wien) ( ) S U ( 2 ) S U 2 = k B hν ln U hν = 1, (54) = k B 1 hν U (55) Planck (53) (55) ( 2 ) S k B U 2 = U(U + hν), (56) ( ) S = k B U + hν ln = 1 U hν U, (57) U Planck 1.5 Wien (57) [ S = k B ln U + hν + U ] U + hν ln. (58) hν hν U Wien (U hν) ( U S k B 1 ln U ). (59) hν hν E ν E(ν, )=8π ν2 U (60) c3 S(ν, ) = 8π ν2 c 3 k U B hν = k B E hν [ 1 ln ( 1 ln U ) (61) hν ( c 3 )] E 8πhν 3. (62) 11

, 0 ( 0 ) E S S 0 = k B hν ln ( ) = k B n ln 0 0 ( ) n = k B ln. (63) 0 n E hν (64) W W 0 = ( 0 S = k B ln W (65) ( ) W S S 0 = k B ln. (66) W 0 ) n. (67) Wien Rayleig-Jeans 1.5.1 (21) (22) ( ) S ( ) S ) ΔS = 1 ΔU + P Δ (68) = 1 ( ) U = 1 ( ) U {( ) S {( ) S } } = = 1 du, )U = u( ) (69) d = u + P = 4u 3. (70) = 4 3 du, (21) (71) d du d 4u. (22) (72) 3 2 4u 3 2 = 1 du 3 d. (73) du d =4u. (74) 12

2 δ 2.1 Dirac δ Dirac δ (1) δ(x) = 0 for x 0, (75) (2) δ(x)dx =1. (76) h(x) x =0 (3) h(x)δ(x)dx = f(0). (77) Dirac δ f(x) x 0 sin gx δ(x) = lim g πx. (78) f(x) f(x) sin gx gx sin gx πx. (79) gx πx = g π (80) g f(0).x 0, f(x) x = π/g g x =0 (75) (76) A e iz I(z) dz (81) z 0 sin x x dx = π 2 (82) (88) B I(α) = 0 e αx sin x dx (83) x 13

di dα = = 0 ( e αx sin x α x 0 = 1 2i 0 1 = α 2 +1 sin xe αx dx ) dx [e (i α)x dx e (i+α)x dx] (84) I(α) = tan 1 α + C. (C : ) (85) (83) I( ) =0 0= π + C. (86) 2 I(α) = tan 1 α + π 2 (87) α =0 (82) sin gx dx = π (88) x f(x)dx = 1 (89) g (76) (78) Dirac δ 2.2 δ ϕ k (x) Ne ikx (90) g ϕ k (x)ϕ k(x)dx = N 2 lim e i(k k )x dx g g = N 2 lim g N =1/(2π) 1/2 2 sin g(k k )x k k (78) = 2πN 2 δ(k k ). (91) ϕ(x) = 1 (2π) 1/2 eikx. (92) 14

3 Dirac bra ket 3.1 x > x >: x ψ(x) < x ψ > ψ > x > ψ(x) (93) ψ x (x) x > ψ x (x) =<x x > (94) ψ x (x) 2 x > x x x ψ x (x) =0(x = x ) ψ x (x) δ(x x ). ψ x (x) =<x x >= δ(x x ). (ket x >) (95) dx x ><x = 1 (96) ψ > = 1 ψ > = = dx x ><x ψ > dxψ(x) x >. (97) ψ x ψ(x) {φ n (x)} F (x) F (x) = c n φ n (x). (98) n=1 c n = = dxφ (x)f (x) dx < φ n x><x F > = <φ n F>. (99) 15

3.2 bra-ket Schrödinger A A ψ > A ψ >= a ψ >. (100) < x <x A ψ > = <x A dx x >< x ψ > ) (96) (100) = = dx <x A x >< x ψ> dx <x A x >ψ(x ). (101) <x A ψ >= a<x ψ >= aψ(x) (102) (101) (102) A = p x = i x ( x ) dx <x A x >ψ(x )=aψ(x). (103) <x p x x >= i x δ(x x ) (104) dx <x p x x >ψ(x )= i ψ(x) =( k)ψ(x) x ) ψ(x) eikx (105) A = H ( ) <x H x >= ( 2 2 ) 2m x 2 + (x) δ(x x ) (106) < x H x > x xx 16