Bose-Einstein Hawking Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2,

Similar documents
1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x


6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E


TOP URL 1

修士論文 物性研究 電子版 Vol, 2, No. 3, (2013 年 8 月号 ) * Bose-Einstein.

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

A

橡超弦理論はブラックホールの謎を解けるか?

gr09.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

( ) ,

arxiv: v1(astro-ph.co)

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

tnbp59-21_Web:P2/ky132379509610002944

untitled

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

研修コーナー

パーキンソン病治療ガイドライン2002

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Korteweg-de Vries

30

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

本文/目次(裏白)

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

Gmech08.dvi


( )

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

QMI_10.dvi

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

QMII_10.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T



講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

05Mar2001_tune.dvi

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )


2011de.dvi

LLG-R8.Nisus.pdf

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

Untitled


[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

TOP URL 1

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

Note.tex 2008/09/19( )

日本内科学会雑誌第102巻第4号

TOP URL 1

85 4

TOP URL 1

The Physics of Atmospheres CAPTER :

,,..,. 1

4‐E ) キュリー温度を利用した消磁:熱消磁

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

支持力計算法.PDF

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

untitled


19 /

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

(Maldacena) ads/cft

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

DVIOUT-fujin

master.dvi

8 8 0

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Microsoft Word - 11問題表紙(選択).docx

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

Gmech08.dvi

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

pdf

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

main.dvi

Nosé Hoover 1.2 ( 1) (a) (b) 1:

Gmech08.dvi

Chap11.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π


Transcription:

Bose-Einstein Hawking E-mail: moinai@yukawa.kyoto-u.ac.jp Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2, 3] Hawking Hawking 6nK Hawking Hawking 3K Hawking Hawking Unuh 1981 [4, 5] [6] Hawking Bose-Einstein 3 Hawking 4 Bose-Einstein 5 2 Bose-Einstein Bose-Einstein ε, ε 1, ε 2,... N Pauli Bose-Einstein : n ε = exp 1 ε µ k B T, 1 1 1

µ k B Boltzmann T ON Bose-Einstein µ = ε 1 Bose-Einstein Bose Einstein 1995 2 Bose-Einstein [7] Bose-Einstein Bose-Einstein Bose-Einstein 21 Nobel : V = 1 2 mω2 ho 2, m 3 Hawking Hawking Einstein R µν 1 2 g µνr = 8πG c 4 T µν. 1 µ = ε N ε µ = O1/N 24 He Bose-Einstein 2

R µν Ricci g µν R G T µν Einstein Schwazschild Schwazschild ds 2 = 1 g c 2 dt 2 d2 1 g 2 dθ 2 2 sin 2 θdϕ 2 g g = 2GM/c 2 g = 3 km g = 1 cm g Planck v = c g / t cd t = cdt v/c 1 v 2 /c 2 d ds 2 = c 2 d t 2 d vd t 2 2 dθ 2 2 sin 2 θdϕ 2 2 ds = ct = ± + g ln 1 g Schwazschild g µν 1 gg µν ϕ g x µ x ν = 3 g = detg µν s Minkowskii δ = 2 g + 2 g log min g min k B T H = c 3 /8πGM Planck Planck 3

4 Bose-Einstein Bose-Einstein Bose-Einstein Goss-Pitaevskii Bogoliubov-de Genne Bose-Einstein 4.1 Bose-Einstein 87 Rb 2 Bose-Einstein N N = ON Φ a a a Φ = N Φ, a Φ = N + 1 Φ. N = ON N + 1 N Bose [8] φ = φ, t S = dt d 3 [ i φ t φ φ 2 2m 2 + 1 2 mω2 ho 2 φ 12 ] Uφφφφ U s φ = Φ Goss- Pitaevskii i t Φ = 2 2m 2 + 1 2 mω2 ho 2 Φ + UΦ ΦΦ. 4 Goss-Pitaevskii [9] l = / mω ho u = NU/ ω ho l 3 l Oµm ω ho = OnK u = 5 u = 5 1 4

.6.5 Φ hamonic osci. stong coupling.6.5 Φ hamonic osci. stong coupling.4.4 Φ.3 Φ.3.2.2.1.1 1 2 3 4 5 1 2 3 4 5 a b 1: a u = 5 bu = 5 ϕ Φ ϕ i t ϕ = 2 2m 2 + 1 2 mω2 2 + 2UΦ Φ ϕ + UΦ 2 ϕ. 5 Φ ϕ [ ϕ, t, ϕ, t ] = δ 5 Bogoliubov ϕ, t = [ ] A α, t b α + Bα, t b α 6 α A α, t B α, t A α, t K UΦ 2 i t = B α, t UΦ 2 K A α, t B α, t, 7 K = 2 2m 2 + 1 2 mω2 2 + 2UΦ Φ Bogoliubov-de Gennes 7 7 A α, t = Φ, t, B α, t = Φ, t Goss-Pitaevskii ϕ E i t A α, t B α, t = K E UΦ 2 UΦ 2 K E A α, t B α, t 5

Goss-Pitaevskii Φ Φ Φ = ρ 1/2 exp iθ Goss-Pitaevskii 4 1/ ul Φ 2 t θ 1 2 θ 2 1 2 2 gρ t ρ + ρ θ = θ t + v t + v θ c 2 s θ v = θ c s = UΦ Φ/m g µν 3 c 2 s v 2 v x v y v z v x 1 g µν = c s v y 1 v z 1 2 v c s θ θ = 1 Φ 2iρ ϕ Φ ϕ ρ = Φ ϕ + Φ ϕ Bogoliubov b α,b α θ = f α b α + fαb α α µν ρ = α g α b α + gαb α p, q = 4πi u f α, f β = δ αβ d 2 [p t + v q [ t + v p ] q ] Klein-Godon [1] 6

5 Bose-Einstein Hawking Bose-Einstein Bose-Einstein Hawking v > c s Laval [11] [12] [13] Feshbach [14] u = 5 Goss-Pitaevskii ω ho ω ho /2 2a t =.4 c s v ω 1 ho > h h 3.67 v > c s > h < h 2.5 2 c s v 6 5.6.5 1.5 H 4 3.4.3 T H 1 2.2.5 1.1 1 2 3 4 5 6 7 a 2 4 6 8 1 t b 2: at =.4 c s v b H k B T H = 2π v c =H Hawking 2b backeaction backeaction?? WKB Hawking ω ho OnK Hawking Hawking Goss- Pitaevskii Bogoliubov-de Gennes t Φ, t Φ, t Φ Bβα = f 2 β, f α 1 7

.1 8e-5 α=: T H =.61 α=1: T H = 1.32 α=2: T H = 1.219 6e-5 4e-5 2e-5 1 2 3 4 5 ω 3: t = 1.44 Planck t = 1.44 3 Planck Planck Hawking backeaction quantum depletion Goss-Pitaevskii Bose-Einstein quantum depletion, Bα, t B α, t α quantum depletion 4a 4b quantum depletion Josephson disentangle 8

.25 t =.1 t = 83.4 Quantum Depletion.2.15.1.5 Quantum Depletion.8.6.4.2 1 2 3 4 5 6 1 2 3 4 5 6 a b 4: Quantum depletion a t = bt = 83.4 6 Planck Bose-Einstein Hawking Hawking Hawking OnK quantum depletion [1] J. D. Bekenstein: Phys. Rev. D 7 1973 2333. [2] S. Hawking: Natue 248 1974 3. [3] S. W. Hawking: Commun. Math. Phys. 43 1975 199. [4] W. G. Unuh: Phys. Rev. Lett. 46 1981 1351. 9

[5] : 76 21 328. [6] M. Novello, M. Visse, and G. Volovik: Atificial black holes Wold Scientific, Singapoe, 22. [7] C. Pethick and H. Smith: Bose-Einstein Condensation in Dilute Gases Cambidge Univesity Pess, Cambidge, 21. [8] J. W. Negele and H. Oland, Quantum Many-Paticle Systems Westview Pess, Boulde, 1998. [9] F. Dalfovo, S. Giogini, L. P. Pitaevskii, and S. Stingai: Rev. Mod. Phys. 71 1999 463. [1] N. Biell and P.C.W. Davies, Quantum Fields in Cuved Space Cambidge Univesity Pess, Cambidge, 1982. [11] M. Sakagami and A. Ohashi: Pog. Theo. Phys. 17 22 1267. [12] L. J. Gaay, J. R. Anglin, J. I. Ciac, and P. Zolle: Phys. Rev. Lett. 85 2 4643. [13] Y. Kuita, M. Kobayashi, T. Moinai, M. Tsubota, and H. Ishihaa: Phys. Rev. A 79 29 43616. [14] Y. Kuita and T. Moinai: Phys. Rev. A 76 27 5363. 1