MS#sugaku(ver.2).dvi

Similar documents
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Untitled

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

第5章 偏微分方程式の境界値問題

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

IA

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ


30

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

QMI13a.dvi

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

note1.dvi

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Anderson ( ) Anderson / 14

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

gr09.dvi


/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

( )

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co


Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence


5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

i


TOP URL 1

A 99% MS-Free Presentation

第1章 微分方程式と近似解法

構造と連続体の力学基礎

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

all.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

総研大恒星進化概要.dvi

December 28, 2018


1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji


untitled

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

基礎数学I

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±


( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

TOP URL 1

QMI_10.dvi

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

液晶の物理1:連続体理論(弾性,粘性)

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

TOP URL 1

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

b3e2003.dvi

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Part () () Γ Part ,

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

Gmech08.dvi

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

meiji_resume_1.PDF

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r



QMI_09.dvi

QMI_10.dvi

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

0406_total.pdf

Microsoft Word - 11問題表紙(選択).docx

2000年度『数学展望 I』講義録

MOSFET HiSIM HiSIM2 1

A

Transcription:

1 1,,,.,,,,,.,.,,,.,, Computer-Aided Design).,,, Boltzmann,, [1]., Anderson, []., Anderson, Schrödinger [3],[4]., nm,,.,,,.,, Schrödinger.,, [5],[6].,,.,,, 1

.,, -. -, -., -,,,. Wigner-Boltzmann Schrödinger, de Broglie, Madelung, Bohm [7],[8], Schrödinger Madelung Wigner-Wyle [9]., R d,d=1,, 3, Single-state Schrödinger i t ψ i(x, t) = m ψ i (x, t)+v (x, t)ψ i (x, t) (1), Wigner-Wyle. V (x, t) i E i ψ i. ψ ψ, ρ(x, x )= i ψ i (x)ψ i (x )α i (). α i i., k, T, β =1/kT., ψ i Schrödinger, Heisenberg : i ρ t = m (Δ x Δ x ) ρ +(V (x) V (x )) ρ. (3), Wigner rotated Fourier : 1 f w (r, p) = (π ) d ρ(r + 1 r,r 1 r )e ipr dr. (4) Heisenberg x = r + r / x = r r / Fourier, Q(f w ), Wigner Wigner-Boltzmann : θ[v ] θ[v ]f w = i t f w(r, p)+ p m rf w (r, p) θ[v ]f w = Q(f w ). (5) 1 (π ) d (V (r + r r ) V (r ) ) f w (r, p)e i(p p )r dp dr (6)., Tayler,

3 t f w(r, p)+ p m rf w r V p f w 0 α=1 α ( 1) α 4 α (α + 1)! ( rv p f w ) α+1 = Q(f w ) (7) θ[v ]f w r V p f w (8) Wigner-Boltzmann Boltzmann 3 Wigner A(p) A = A(p)f w (r, p)dp (9). u macroscopic fluid velocity p /m p = mu + p (10),,,, n def = < 1 >= f w (r, p)dp, (11) def P ij = p i p j p m = i p j m f w(r, p)dp, (1) W def = p m = 1 mnu 1 Tr(P ij) (13). Wigner-Boltzmann Chapman-Enskog [5],[6]. Wigner-Boltzmann A =1 p p /m 0 1, α +1 3 (7) 4., τ p τ w, : n t + 1 Π i =0, i =1,, 3, (14) m Π j t + (u i Π j P ij )= n V x j mnu j τ p, (15) W t + (u i W u j P ij + q i )= Π i V (W W 0). (16) m τ w, W 0. n, u, Π i = mnu i,i=1,, 3 (17) 3

4. q i., Wigner,,,., Fermi-Dirac Boltzmann ρ(x, x )= i ψ i (x)ψ i (x )ce βe i (18) β =1/kT,, β ρ(x, x )= ( 4m x ρ(x, x )+x ρ(x, x ) ) 1 (V (x)+v (x )) ρ(x, x ) (19), Bloch. f w0 Wigner x = r + r / x = r r / (19) Wigner-Weyle ( ) β f w 0 (r, p) = 8m r p f w0 (r, p) m V β (r, p p )f w0 (r, p )dp (0). V β (r, p) = ) 1 1 (V (π ) d (r + r r )+V(r ) e ipr dr (1). (0) Taylor ( ) β f w 0 (r, p) = 8m r p f w0 (r, p) m. ε = f w0 f w0 (r, p) = α=0 α ( 1) α (α)!4 α α r V (r)p α f w0 () ε k φ k (r, p) (3) k=0, Wigner., (3) () ε, Wigner, f w0 φ 0 + εφ 1, (4), p β( φ 0 = Ae m +V ), (5) )) p β( φ 1 = Ae m +V ) 1 ( β r V + (( β3 r V ) + p 8m 3 m r V (6)., Wigner, ( p β( f w0 (r, p) Ae m +V ) 1 β ( r V β )) ) (( r V ) + p 8m 3 m r V + O( 4 ) (7) 4

, f w0 (r, p) ( ( p β( = Ae m +V ) 1+ β V 8m x k 5 + β3 4m ( V x k ) + β3 4m p kp V l x k x l ) ) + O( 4 ) (8)., k =1,, 3, l =1,, 3.,, ( ( n = Ce βv 1+ β V 1m x k ( ) + β3 V ) ) + O( 4 ), (9) 4m x k P ij = n β δ ij β 1m n V x j + O( 4 ), (30) W = 1 mnu + 3. n β + β V 4m n x k + O( 4 ) (31) 4 - P ij W (15) (16).,, (14) (15) n t + x (nu i)=0, (3) t (mnu i)+ ( ) mnu i u j + kt n + β x j 1m n V = n V mnu i (33) x j τ p. β (9),. V = 1 log n + O( ). (34) x j β x j Ancona (33) ( ) β n V 1m x j x j 1m x j = n 6m ) ln(n) x j ( 1 ) n n x j (n (35) [5]., (33) t (mnu i)+ (mnu i u j + kt n) x j 6m n ( 1 ) n n x = n V mnu i (36) j τ p. J j = qnu j q = e. -., (36) 5

6 τ p t J i + kt qτ p m. n qτ p m 6m n ( 1 ) n n x = qτ p j m n V J i (37) μ = eτ p m (38) Einstein D = μ kt e (39) V = eϕ (40), (37) J i = ed n eμn (ϕ + 6em 1 ) n n. (3), μ 1 Ω R d (d 1) : x j (41) λ Δϕ = n f, (4) ( t n + div n (ϕ ln(n)+b Δρ ) ρ ) =0. (43) ρ = n, b = /6em. λ., γ n = bδρ/ρ - (DD), DD. ) v = ϕ ln(n)+b Δρ ρ (44) 4 : λ Δϕ = n f, (45) t n + div(n v) =0, (46) b Δρ ln(n)+ϕ = v. ρ (47),,, (ϕ, v, ρ), (47) ρ [11].,, -. 6

7 5 - - (DD),,, [10]. - (QDD),, [11], [1], QDD [13]. : (A.1) Ω R d d =1,, 3 (A.) Ω Ω D Dirichlet Ω N Neumann Ω \ (Ω D Ω N ) (A.3) H 1 (Ω) L p (Ω) H (Ω) W 1,q (Ω) 1/p +1/q =1/ p, q (, ]., θ (0, 1), C>0, a W 1,q (Ω), θ a 1/θ, g L (Ω) ψ D W 1,q (Ω) div(a ψ) =g, ψ ψ D H0(Ω 1 Ω N ) ψ W 1,q (Ω), ψ W 1,q (Ω) C( ψ D W 1,q (Ω) + g L (Ω)). (A.4) (ϕ D,v D,u D ) (H 1 (Ω) L (Ω)) 3. (A.5) f L (Ω). QDD, ρ = n = e u (47), λ Δϕ = e u f, (48) b (ρ u)+ρu = ρ (ϕ v), in Ω (49) div(n v) =0, (50). ϕ = ϕ D, u = u D, v = v D,on Ω D, (51) ϕ ν = u ν = v ν =0,on Ω N (5), (ϕ, v, u) QDD. (49) ρ = e u u, ρ [14] (48)-(50), (ϕ, v, u) [13] w L (Ω) (P1) ϕ 7

8 λ Δϕ = e w f. (53) (P) v div(e w v) =0. (54) (P3) u b (e w u)+e w u = e w (ϕ v). (55) (P1) (P3) Lax-Milgram X = {w L (Ω) : U w U} T : X X, T (w) =u Stampacchia, T, Schauder [13]: 1 (ϕ, v, u) (H 1 (Ω) L (Ω)) 3 (48)-(5) Ω ϕ ϕ ϕ, v v v, U u U ϕ, ϕ, v, v, U, U 1( (51)-(5) (48)-(50) H 1 (Ω) L (Ω)., A(ρ) = Δρ/ρ [1],, (A.3) T [13]. v D W 1,q T L p 1/p +1/q =1/ QDD., T, QDD ρ. 6,. {t k } k N τ k = t k t k 1 Euler (ϕ, n, u) QDD : n k n k 1 div( n k n k (ϕ k + γ τ n)) k = 0, k (56) b (ρ k u k )+ρ k u k = ρk (ϕk v k ), (57) λ Δϕ k = n k f. (58) n(x, 0) = n 0 (x), ϕ k =0, u k = ϕ b /, n k = n D, on Ω (59) 8

9 QDD, ϕ b. Lyapunov : ( ) ). W k = Ω (b ρ k +(n k (ln n k 1) + 1) + λ ϕk )dx (60) W k+1 W k (61) [15]. QDD, - [14]. Ω i Ω Ω = i Ω i,ω i QDD (49)-(50) G = ϕ + b ρ/ρ, J = e G η, η = e v (6) F = ρ u, ρ = e u (63) Tikhonov-Samarskii [16] (49) (50) (49), (50) Green n t dx e G η ds =0, (64) Ω i Ω i ν b ρ u Ω i ν ds + ρudx + 1 ρ(ϕ v)dx (65) Ω i Ω i xi+1 n t dx = J i+1/ J i 1/, (66) xi+1/ b(f i+1/ F i 1/ ) u i ρdx = 1 xi+1/ 1/ (ϕ i v i ) ρdx (67) 1/ [,+1 ] F J F i+1/ or J i+1/ = η i+1 η i xi+1 e θ, θ = G or u (68) dx, (66), (67),. xi+1 e θ dx θ 9

10 xi+1 e θ dx = h i+1 e θ i+1 +θ i (69) (69) (68),., θ,,, xi+1 e θ dx = h i+1e θi+1 B(θ i+1 θ i ) (70)., B( ) Bernoulli J i+1/ = 1 h i+1 (B(G i+1 G i )n i+1 B(G i G i+1 )n i ), (71) F i+1/ = 1 h i+1 e u i+1 B(u i+1 u i )(u i+1 u i ) (7), QDD : n k n k 1 τ k = B(Gk i+1 Gk i )nk i+1 (B(Gk i Gk i+1 )+B(Gk i Gk i 1 ))nk i + B(Gk i 1 Gk i )nk i 1 h,(73) b(ρk i+1b(u k i+1 u k i )(u k i+1 u k i ) ρ k i B(u k i u k i 1)(u k i u k i 1)) h +Λ k i u k i = Λk i (ϕk i v k i ). (74), Λ i = +1 ρdx, Tikhonov-Samarskii,., Boltzmann., DD G = ϕ Bell Scharfetter Gummel Scharfetter-Gummel [17],, CAD. 7,,., Schrödinger. -,,.,, 10

11 [18].,,. [ 1 ] T.Grasser, T-W.Tang, H.Kosina, S.Selberherr, A review of hydrodynamic and energy-transport models for semiconductor device simulation, IEEE Proc., 91(003), 51-74. [ ] S.Kotani, Ljapunov indices determine absolutely continuous spectra of sationary random one-dimensional Schrödinger operators, Proc. of Taniguchi Symp. SA. Katata(198),5-47. [3],,,38(1986),53-61. [4], II,,40(1986),193-01. [ 5 ] M.G.Ancona and G.J.Iafrate, Quantum correction to the equation of state of an electron gass in a semiconductor, Phys.Rev.B, 39(1989), 9536-9540. [ 6 ] C.L.Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl.Math., 54(1994), 409-47. [ 7 ] D.Bohm, A suggested interpretation of the quantum theory in terms of hidden variables I, Phys.Rev., 85(195),166-179. [ 8 ] D.Bohm, A suggested interpretation of the quantum theory in terms of hidden variables II, Phys.Rev., 85(195),180-193. [ 9 ] R.E.Wyatt, Quantum dynamics with trajectories: Introduction to quantum hydrodynamics, Springer,(005). [10] J.W.Jerome, Analysis of charge transport, Springer-Verlag Berlin Heidelberg, (1996). [11] R.Pinnau and A.Unterriter, The stationary current-voltage characteristics of the quantum drift-diffusion model, SIAM J.Numer.Anal., 37(1999), 11-45. [1] A.Unterreiter, The thermal equibrium solution of a generic bipolar quantum hydrodynamic model, Comm. Math. Phys., 188(1997), 69-88. [13] S.Odanaka, A numerical scheme for quantum hydrodynamics in a semiconductor, RIMS Kokyuroku, Kyoto University,1495(006), 51-59. [14] S.Odanaka, Multidimensional discretization of the stationary quantum drift-diffusion model for ultrasmall MOSFET structures, IEEE Trans. CAD of ICAS, 3(004), 837-84. [15] S.Gallego and F.Méhats, Entropic discretization of a quantum drift-diffusion model, SIAM J. Numer.Anal., 43(005), 188-1849. [16] G.I.Maruchuk, Methods of numerical mathematics, Springer-Verlag, (198). [17] D.L.Scharfetter and H.K.Gummel, Large signal analysis of a silicon Read diode oscillator, IEEE Trans. Elec. Dev., 16(1969), 64-77. [18] S.Odanaka, A high-resolution method for quantum confinement transport simulations in MOSFETs, IEEE Trans. CAD of ICAS, 6(007), 80-85. ( 007 5 9 ) ( ) 11