Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Similar documents
TOP URL 1

TOP URL 1

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

TOP URL 1

量子力学 問題

( ) (ver )

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

TOP URL 1

量子力学A

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

『共形場理論』

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

( )

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

0406_total.pdf

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


,,..,. 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

201711grade1ouyou.pdf

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

第10章 アイソパラメトリック要素


main.dvi

基礎数学I

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

( ) 1 (Quantum Field Theory) = Maxwell Dirac Quantum Electro-Dynamics (QED) 1

IA

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

i x- p

newmain.dvi

QMII_10.dvi

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Note.tex 2008/09/19( )


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

gr09.dvi

QMI_09.dvi

QMI_10.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

arxiv: v1(astro-ph.co)

Microsoft Word - 11問題表紙(選択).docx

untitled

第1章 微分方程式と近似解法

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

The Physics of Atmospheres CAPTER :

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

6.1 (P (P (P (P (P (P (, P (, P.

I II III IV V


m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


第3章

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

構造と連続体の力学基礎

6.1 (P (P (P (P (P (P (, P (, P.101

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

chap9.dvi

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

本文/目次(裏白)

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

DVIOUT-fujin

多体問題

Transcription:

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp ν γ ν + m η µν p µ p ν + m 2 5.4 iγ µ µ + mψ 0 5.5 ψ 4 4 2 m 4 4 1. 2. 4 3. 10 {γ µ, γ ν } γ µ γ ν + γ ν γ µ

Dirac 39 5.1 Lorentz 4 v µ v 0, v Lorentz v µ v µ Λ µ νv ν 5.6 v, w w µ v, w η µν v µ w ν η µν Λ µ σλ ν λv σ w λ 5.7 η µν Λ µ σλ ν λ η σλ 5.8 Lorentz Lorentz O3, 1 11 5.1.1 Lorentz Lorentz Lorentz Lorentz facter γ 1/ 1 β 2 S β k S v 0 γv 0 + β k v k v 0 v 0 + β v v k γv k + β k v 0 v v + βv 0 5.9 β 1 Λ µ ν ϵ 0 β 1 + t 1 iβ β k K k δ ν µ i 1 0 2 ωρσ µ M ρσ ν 5.10 K 1 i 0 1 0 0 1 0 0 0, K 2 i 0 0 1 0 1 0 0 0, K 3 i 0 0 0 1 1 0 0 0 5.11 L 1 i 0 0 0 1, L 0 0 0 1 2 i, L 3 i 0 0 1 0 0 1 0 0 11 O3, 1 SO3, 1 P,T 0 0 1 0 0 1 0 0 5.12

Dirac 40 L k K k [L i, L j ] iϵ ijk L k 5.13 [K i, K j ] iϵ ijk L k 5.14 [L i, K j ] iϵ ijk K k 5.15 L k K k i 0 0 t 0 L 3 k 0 e t k e k 0 1 2 ϵ kijm ij 5.16 ˆM k0 M 0k 5.17 M µν M ij M 0i Λ µ ν ϵ v ν v µ i 1 2 ωρσ M ρσ µ ν v ν 5.18 Λ e i 1 2 ωµν M µν e iθi L i +β i K i 5.19 M σρ 12 4 v M ρσ µ ν iδ µ [ρ η σ]ν 5.20 δv µ 1 2 ωρσ M ρσ µ ν v ν i 1 2 ωρσ δ µ [ρ η σ]νv ν iω ρσ δ µ ρ η σν v ν iω µσ v σ 5.21 ω µν ω k0 β k ω 0k, ω ij ϵ ijk θ k 5.22 K i, L i 13 12 η µν n 13 M [ ˆM ρσ, ˆM ρ σ ] iη ρ[ρ ˆMσσ ] η σ[ρ ˆMρσ ] 5.23 +i M i

Dirac 41 2 [ ˆM ρσ, ˆM ρ σ ] iη ρ[ρ ˆMσ ]σ η σ[ρ ˆMσ ]ρ 5.24 [, ] a a A [µ B ν] A µ B ν A ν B µ. M Proof : [M ρσ, M ρ σ ] δµ [ρ η σ]λδ λ [ρ η σ ]ν δ µ [ρ η σ ]λδ λ [ρ η σ]ν δ µ [ρ η σ][ρ η σ ]ν δ µ [ρ η σ ][ρη σ]ν δ ρ µ η σρ η σ ν δ µ ρ η σ ρη σν δ ση µ ρρ η σ ν + δ µ σ η ρ ρη σν δ ρ µ η σσ η ρ ν + δ µ ρ η σ ση ρν +δ ση µ ρσ η ρ ν δ µ σ η ρ ση ρν iη σρ M µ ρσ ν δ µ ρ η σ ρη σν }{{} IV η ρρ M µ σσ ν + δ µ σ η ρ ρη σν }{{} II η σσ M µ ρρ ν + δ µ ρ η σ ση ρν }{{} III +η ρσ M µ σρ ν δ µ σ η ρ ση ρν }{{} I iη ρ[ρ M σ ]σ µ ν η σ[ρ M σ ]ρ µ ν 5.25 M Lorentz [ ˆM ρσ, ˆM ρ σ ] iη ρ[ρ ˆMσ ]σ η σ[ρ ˆMσ ]ρ 5.26. q.e.d. 5.1.2 Clifford d d {γ µ, γ ν } 2η µν 5.27 η µν γ µ Clifford 2 [ d 2 ] 2 [ d 2 ] 14 Clifford 14 [x] x γ 0 γ 0, γ k γ k 5.28

Dirac 42 k Σ µν 1 4i [γ µ, γ ν ] 5.29 M µν d 1 dd 1 Σ d SOd 2 2 [ d 2 ] Clifford 1 16 [[γ µ, γ ν ], [γ ρ, γ λ ]] 1 4 [γ µγ ν, γ ρ γ λ ] 1 4 γ µγ ν γ ρ γ λ 1 4 η µργ [ν γ λ] + η νρ 5.30 Clifford Σ µν i 4 [γ µ, γ ν ] [Σ µν, Σ ρλ ] iη µ[ρ Σ νλ] η ν[ρ Σ µλ] 5.31 4 4 L i 1 2i γ jγ k cyclic, K i 1 2i γ iγ 0 5.32 K i, L i ψ ψ ψ Uψ, ψ ψ ψu 1 5.33 U e iθi L i +β i K i 5.34 ψ ψ γ 0

Dirac 43 1. ψ ψ ψ ψu 1 γ 0 Σ ρσγ 0 Σ ρσ 5.35 2. U 1 γ µ U Λ µ νγ ν 5.36 Σ µν ω ρσ [γ µ, Σ ρσ ] 1 2i ωρσ [{γ ρ, γ µ }, γ σ ] iω µσ γ σ ω M µ νγ ν 5.37 5.2 Dirac Dirac iγ µ µ mψ 0 5.38 Gamma 5.36 iγ µ µ mψ Uiγ µ µ mψ 5.39 5.2.1 γ SL2, C K i, L i A ± j 1 2 L j ± ik j 5.40 A ± SU2 [A ± i, A± j ] iϵ ijka ± k and [A + i, A j ] 0 5.41 SU2 SU2

Dirac 44 j +, j D j+,j n 2j + + 12j + 1 1 2, 0 + 0, 1 2 5.42 γ µ 0 σ µ σ µ 0 5.43 σ µ α β 1, σ and σµ αβ 1, σ 5.44 Wess-Bagger 15 γ 0 0 1 1 0, γ k 0 σ k σ k 0 5.45 L ψiγ µ µ mψ 5.46 ψ ψ γ 0 5.47 ψ ψu ψ ψu γ 0 ψu 1 5.48 Σ µν 1 4i [γ µ, γ ν ] 1 σ [µ σ ν] 0 i 4i 0 σ [µ σ ν] σ µν 0 0 σ µν 5.49 2 L i 1 2i γ jγ k cyclic, K i 1 2i γ iγ 0 5.50 15 WB p µ E, p σ µ p µ E + σ p ξ α

Dirac 45 L i σ i 0 0 σ i, K i i σ i 0 0 σ i 5.51 16 γ 5 1 0 0 1 iγ 0 γ 1 γ 2 γ 3 5.52 P L 1 2 1 γ5, P R 1 2 1 + γ5, ψ ψ L ψ R 5.53 L R L R 5.2.2 0 2 2 i 0 σ ψ L 0 i 0 + σ ψ R 0 5.54 σ µ α β 1, σ and σµ αβ 1, σ 17 iσ µ α β µ η β i 0 σ η 0 mξ 5.56 i σ µ αβ µ ξ β i 0 + σ ξ 0 m η 5.57 η β ξ β i 0 σ i 0 + σ 2 0 + σ 2 5.58 Left-Right ψ L η i 0 σ ψ L 0 16 17 E + σ pψ L 0 σ p E ψ L ψ L 5.59 σ µ W B σµ P S, σµ W B σµ P S 5.55

Dirac 46 iγ µ µ mψ 0 5.60 m i 0 + σ i 0 σ m ψ 5.61 iγ µ µ + miγ µ µ mψ µ µ m 2 ψ 0 5.62 5.3 Dirac Dirac ψ uke ik x, k 2 m 2 5.63 γ µ k µ muk 0 5.64 σ kσ k k 2 m 2 5.65 σ k 0 u s α σ k s kα s 0 σ k α s σ kα s 5.66 α s 2 α 1 1, α 2 0 5.67 0 1

Dirac 47 Proof : m σ k m σ k uk σ k m σ k σ k σ k σ k m σ k α α 0 5.68 α q.e.d. ψx vke ik x 5.69 γ µ k µ mvk 0 5.70 σ kα v s s k σ kα s 5.71 5.4 d 3 k 1 ψx b s 2π 3 2Ek ku s ke ik x + d s k vs ke k x s d ψx 3 k 1 d s 2π 3 2Ek k v s ke ik x + b s k ūs ke k x ψ γ 0 5.72 s anticommutation relation {b s k, b s k } {d s k, d s k } δ ss 2π 3 δ 3 k k 5.73 {ψx, ψx } eq d 3 kd 3 k 1 2π 6 2 E k E k s,s {b s k, b s k }u s kū s k e ikx k x + {d s k, ds k }vs k v s k e ikx k x d 3 k 1 u s kū s ke ikx x + v s k v s ke ikx x 2π 3 2E k s d 3 k 1 e ikx x γ µ k + 2π 3 2E k µ γ 0 δ 3 x x 5.74 k k E k, k u s kū s k s m σk σk m γ µ k µ + m

Dirac 48 v s k v s k s m σk σk m γ µ k µ m 5.75 {ψx, ψ x } eq δ 3 x x 1 4 5.76 18 5.5 Propagator S ret x y 0 {ψx, ψy} 0 x 0 >y 0 iγµ x µ + md ret x y 5.77 Proof : 2 0 ψx ψy 0 d 3 kd 3 k 1 2π 6 2 u s kū s k e ikx k y 2π 3 δ 3 k k E k E k s,s d 3 k 1 γ µ k 2π 3 µ + me ikx y 2E k d iγ µ µ x 3 k 1 + m e ikx y 5.78 2π 3 2E k 0 ψyψx 0 d 3 kd 3 k 1 2π 6 2 v s k v s k e iky k x 2π 3 δ 3 k k E k E k s,s d 3 k 1 γ µ k 2π 3 µ me iky x 2E k d iγ µ 3 k 1 µ + m e iky x 5.79 2π 3 2E k S F x y 0 T ψx ψy 0 θx 0 y 0 0 ψx ψy 0 θy 0 x 0 0 ψyψx 0 i / x + md F x y 5.80 { ψxψy x 0 > y 0 T {ψxψy} 5.81 ψyψx y 0 > x 0 18

Dirac 49 S F x y d 4 k i γ µ k µ + m 2π 4 k 2 m 2 + iϵ eikx y d 4 k i 2π 4 k/ m + iϵ eikx y 5.82 k/ γ µ k µ 5.83 k/ m k/ + m k 2 m 2 5.84 2 i / x ms F x y iδ 4 x y1 4 5.85 5.5.1 ψ π ψ iψ 19 L ψiγ µ µ mψ ψ γ 0 iγ 0 0 + iγ k k mψ 5.86 H dx 3 ψ iγ k k + mψ 5.88 H dx 3 ψ iα + βmψ 5.89 α k γ 0 γ k β γ 0 H α p + mβ 5.90 Dirac i t ψ Hψ 5.91 19 H π ψ L 5.87

Dirac 50 H d 3 k 2π 3 2 E k b s k b s k + d s k d s k 5.92 P s1 d 3 xψ i ψ d 3 k 2π 3 2 kb s k b s k + d s k d s k 5.93 s1 j µ e ψγ µ ψ 5.94 Q d 3 k 2π 3 2 b s k b s k d s k d s k 5.95 s1 b 0 d 0 5.6 Pauli γ 20 γ 0 1 0 0 1 and γ k 0 σ k σ k 0 5.96 cp µ γ µ + Mc 2 ψ Eγ 0 cp k γ k + Mc 2 ψ 0 5.97 γ 0 γ 0 2 1 Eψ + cp k α k + Mc 2 βψ 0 5.98 α γ 0 γ k 0 σ k σ k 0 and β γ 0 1 0 0 1 5.99 20 U 1 2 1 1 1 1

Dirac 51 H c α p + Mc 2 β Mc 2 c σ p c σ p Mc 2 5.100 Mc 2 E c σ p Hψ Eψ ψ 0 5.101 c σ p Mc 2 E Mc 2 E det c σ p c σ p Mc 2 E 0 5.102 E 2 M 2 c 4 c σ p 2 E 2 M 2 c 4 c 2 p 2 0 5.103 E ±E p ± M 2 c 4 + c 2 p 2 5.104 on shell E E p E E p ϕ ψ 2 χ Mc 2 Eϕ + c σ pχ 0 and c σ pϕ Mc 2 + Eχ 0 5.105 E E p > 0 χ c σ p E p + Mc ϕ 5.106 2 χ ϕ ϕ Large component, χ small component E p Mc 2 ϕ c2 σ p 2 E p + Mc 2 5.107 Eϕ p2 2M ϕ + O p 2 M 2 c 2 5.108 2

Dirac 52 5.7 Discrete Symmetries 1. Parity: ψt, x γ 0 ψt, x 5.109 P Pb s k P η b b s k, Pds k P η b d s k 5.110 PP PP 1, ηb 2, η2 d ±1 d 3 k 1 PψxP b s 2π 3 2Ek ku s ke ik x + d s k vs ke k x s d 3 k 1 η 2π 3 b b s 2Ek ku s ke i k x + ηdd s k vs ke k x 5.111 s k k k 0, k k σα k σα uk γ k σα k 0 u k 5.112 σα vk k σα k σα k σα γ k 0 v k 5.113 σα d PψxP γ 0 3 k 1 η 2π 3 b b s ku s ke i k x η 2Ek dd s k vs ke k x 5.114 ψt, x η d η b Parity bilinear s P ψψp η 2 b ψψt, x 5.115 bilinear parity η b 1 bilinear Pψt, xp γ 0 ψt, x 5.116 P ψγ 5 ψp ψγ 5 ψt, x P ψγ µ ψp ψγ { ψγ 0 γ µ γ 0 µ ψt, x for µ 0 ψt, x ψγ µ ψt, x for µ k 5.117

Dirac 53 2. Time reversal:c number T ct c 5.118 anti-linear involution, ψ T ψt, xt γ 1 γ 3 ψ t, x 5.119 T b s kt b s k, T ds kt d s k 5.120 CP T CPT