1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

Similar documents
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

II 2 II

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

i

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

液晶の物理1:連続体理論(弾性,粘性)

Part () () Γ Part ,

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


i


II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou


Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

TOP URL 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

30

Untitled

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

DVIOUT

i

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s


.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

量子力学 問題


1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

振動と波動

newmain.dvi

The Physics of Atmospheres CAPTER :

29

mugensho.dvi

Chap11.dvi

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

1

QMI13a.dvi

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

QMII_10.dvi

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

Note.tex 2008/09/19( )

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

meiji_resume_1.PDF

body.dvi

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

201711grade1ouyou.pdf

2011de.dvi

DVIOUT-fujin

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

I

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

i 18 2H 2 + O 2 2H 2 + ( ) 3K

( )

- II

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f


t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Transcription:

filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin A sin B, (.) tan A ± tan B tan(a ± B) = tan A tan B, (.3) sin(a ± π ) = ± cos A, (.4) sin(a ± π) = sin A, (.5) cos(a ± π ) = sin A, (.6) cos(a ± π) = cos A, (.7) tan(a ± π ) = tan A, (.8) tan(a ± π) = tan A. (.9). sin A + sin B = sin( A + B sin A sin B = cos( A + B cos A + cos B = cos( A + B cos A cos B = sin( A + B tan A ± tan B = ) cos( A B ), (.) ) sin( A B ), (.) ) cos( A B ), (.) ) sin( A B ), (.3) sin(a ± B) cos A cos B. (.4)

3. sin A sin B = [cos(a + B) cos(a B)], (.5) sin A cos B = [sin(a + B) + sin(a B)], (.6) cos A sin B = [sin(a + B) sin(a B)], (.7) cos A cos B = [cos(a + B) + cos(a B)]. (.8) 3 3. n k= n k= n k= k = n(n + ), (3.) k = n(n + )(n + ), (3.) 6 k 3 = 4 n (n + ). (3.3) 3. n cos rx cos x + cos x + + cos nx r= = n+ nx cos( x) sin( sin( x) (3.4) n sin rx sin x + sin x + + sin nx r= n+ nx sin( x) sin( n r= n n r= n = sin( x ) (3.5) cos rx cos( nx) + + cos x + + cos nx = sin[(n + ) x ] sin( x ) (3.6) sin rx sin( nx) + + sin x + + sin nx =. (3.7)

3 4 4. x ( c f, g x df(x) dx lim f(x + x) f(x), x o x (4.) dc =, dx (4.) dx =, dx (4.3) d sin x = cos x, dx (4.4) d cos x = sin x, dx (4.5) d tan x = dx cos x, (4.6) de x dx = ex, (4.7) d log e x d ln x (= dx dx ) = x, (4.8) (4.9) 5 5. (pp.3-33,[]) π π exp( ax )dx = a ( exp( ax )dx = a ) (5.) exp( ax )x dx = π 4a a ( exp( ax )x dx = π a a ) (5.) exp( ax )x n (n )!! π dx =. (5.3) n+ an+ exp( ax )xdx = a. ( exp( ax )xdx = a. ) (5.4) exp( ax )x 3 dx = a. ( exp( ax )x 3 dx = a. ) (5.5) exp( ax )x n+ dx = n!. (5.6) an+ exp( α π 4ξ ) exp( ξ r )dξ = exp( αr). (5.7) r

4 cos(k r) exp( µr) dk = k + µ π. (5.8) r exp( µ r )dµ = π r. (5.9) 6 vector differential operators 6.. (gradient),,grad x, y ( e x, e y r, ϕ ( e r, e ϕ = e x x + e y y = e r r + e ϕ r ϕ (6.) (6.). (rotation),, rot(=curl) 3. (divergence),, div 4. ( ) 6. 3. (gradient),, grad x, y, z ( e x, e y, e z r, ϕ, θ ( e r, e ϕ, e θ = e x x + e y y + e z z = e r r + e θ r θ + e ϕ r sin θ ϕ (6.3) (6.4). (rotation),, rot(=curl) 3. (divergence),, div

5 4. ( ) 3 = x + y + z (6.5) (x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ) = r + r r + r sin θ = r r (r r ) + = r r r + r sin θ θ (sin θ θ ) + θ (sin θ θ ) + r sin θ θ (sin θ θ ) + r sin θ r sin θ ϕ (6.6) r sin θ ϕ (6.7) ϕ (6.8) 6.8 7 7. A V φ(x, y, z), ψ(x, y, z) (ψ ϕ + ψ ϕ)dv = ψ dϕ da (7.) V A dn ( (ψ ϕ ϕ ψ)dv = ψ dϕ ) V A dn ϕdψ da (7.) dn dϕ/dn, dψ/dn ϕ, ψ 8 8. δ(x) = { (x = ) (x ). (8.) Heaviside s step function θ(x) = { (x < ) (x ). (8.)

6 δ(x) dθ(x) dx. { /ε ( x < ε/) δ ε (x) = ( x > ε/). (8.3) (8.4) δ(x) = lim ε δ ε (x) (8.5). sin αx δ(x) = lim α πx 3. e ε k (8.6) δ ε (x) = e ε k e ikx dk = ε π π x + ε, (8.7) δ(x) = lim δ ε (x) = e ikx dk (8.8) ε π δ(x a) = e ik(x a) dk. (8.9) π π δ(k k ) = j k l (kr) j l (k r) r dr, (8.) j l (x) Bessel function δ(x)dx =. (8.) f(x) x = a, x n f(x)δ(x a)dx = f(a), (8.) (8.3) f(x)δ(x a) = f(a)δ(x a), (8.3) xδ(x) =, (8.4) δ (x) = δ ( x), (δ (x) d δ(x)), dx (8.5) δ(ax) = δ(x) (a ), a (8.6) n δ(f(x)) = f (x i ) δ(x x i), (8.7) i= (f(x) f(x i ) =, i =,,, n, (8.8) f (x i ) df(x i) ), (8.9) dx f(x)[ dn dn δ(x)]dx = ( )n f(). (8.) dxn dxn

7 8. [] δ(r r ) = δ(x x )δ(y y ) (8.) = δ(r r )δ(ϕ ϕ ) (8.) r x = r cos ϕ, y = r sin ϕ, r = x + y, tan ϕ = y x. (8.3) 8.3 3 3 δ(r r ) = δ(x x )δ(y y )δ(z z ). (8.4) r = (r, θ, ϕ) x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ, (8.5) r = x + y + z, tan ϕ = y x, tan θ = x + y (8.6) z 3 δ(r r ) = δ(r r )δ(cos θ cos θ )δ(ϕ ϕ ) r (8.7) r = (ρ, ϕ, z) = δ(r r )δ(θ θ )δ(ϕ ϕ ) r sin θ (8.8) x = ρ cos ϕ, y = ρ sin ϕ, z, (8.9) ρ = x + y, tan ϕ = y (8.3) x 3 δ(r r ) = δ(ρ ρ )δ(ϕ ϕ )δ(z z ) ρ (8.3) 3 ( r ) = 4πδ(r), (r x + y + z ). (8.3)

8 9 9. f(x) F (k) F (k) f(x)e ikx dx. (9.) π F (k) f(x) F (k)e ikx dk = [ e ik(x x) f(x )dk]dx = f(x). (9.) π π / π /(π) Gauss. f(x) exp( x a ), a > F (k) = π f(x)e ikx dx (9.3) = a exp( a k ). (9.4) 4 a /a I, p.3 π e ax dx = (9.5) a pp.5-53 e (x+ib) dx = π, b > (9.6) ax + ikx = a(x + ik a ) k 4a. (9.7). f(x) exp( x ), a > a F (k) = π f(x)e ikx dx (9.8) = a exp( a k ). (9.9) a /a

9 9. 3 3 3 f(r) F (k) F (k) ( f(r)e ik r d 3 r, (9.) π) 3 = ( f(x, y, z)e i(xk x+yk y +zk z ) dxdydz (9.) π) 3 f(r) = ( F (k)e ik r d 3 k (9.) π) 3 (9.3)

± [9]. Γ(x) = e t t x dt, (.) Γ(x + ) = x Γ(x), (.) π Γ(x) Γ( x) = sin(πx), (.3) Γ(x + ) Γ( x) = π cos(πx), (.4) Γ(x) = x π Γ(x) Γ( + x). (.5) Γ() =, Γ() =, Γ(3) =, Γ(n + ) = n!. (.6) Γ(/) = π π, Γ(3/) =, Γ(5/) = 3 π 4, (.7) (n )!! (n)! Γ(n + /) = π = π. (.8) n n n!. Hermite polynomial. Schiff ([5, 6, 7, 8, 9, 3])

([5]) ( d dx x d dx + n)h n(x) =, (.9) H n (x) = ( ) n e x dn dx n e x, (.) : H (x) =, (.) H (x) = x, (.) H (x) = 4x, (.3) H 3 (x) = 8x 3 x, (.4) H 4 (x) = 6x 4 48x +, (.5) H 5 (x) = 3x 5 6x 3 + x, (.6) : H n (x) n x n, (as x ), (.7) : e tx t = H n (x) tn n!, (.8) n= H n+ (x) = xh n (x) nh n, (.9) d dx H n(x) = nh n (x), (.). III[4] H n (x)h n e x dx = δ nn n n! π, (.) : H n ( x) = ( ) n H n (x). (.) ( d dx x d dx + n)h n(x) =, (.3) H n (x) = ( ) n e x / dn dx n e x, (.4) : H (x) =, (.5) H (x) = x, (.6) H (x) = x, (.7) H 3 (x) = x 3 3x, (.8) H 4 (x) = x 4 6x + 3, (.9) H 5 (x) = x 5 x 3 + 5x, (.3) : H n () = ( ) n (n )!!, (.3) H n+ () =, (.3) H n+() = ( ) n (n + )!!, (.33) : e tx t / = H n (x) tn n!, (.34) n= H n+ (x) = xh n (x) nh n, (.35) d dx H n(x) = nh n (x), (.36) H n (x)h n e x / dx = δ nn n! π. (.37)

.3 associated Laguerre polynomial) 3. Schiff [5] (a) (b) : e tx/( t) ( t) = n= L n (x) tn n!, (.38) [x d d + ( x) dx dx + n]l n(x) =, (.39) L n+ (x) = (n + x)l n (x) n L n (x),(.4) d dx L n(x) n d dx L n (x) = nl n (x), (.4) (.4) L α n(x) dα dx α L n(x), (.43) [x d dx : ( t)α e tx/( t) ( t) α+ = : d + (α + x) dx + (n α)]lα n(x) (.44) =, L α n(x) tn n!, (.45) n=α x α e x L α m(x)l α (n!) 3 n(x)dx = δ mn (.46) (n α)!. III[4], [9] (a) L n (x) L α= n (x). (.47) (b) [x d d + (α + x) dx dx + n]lα n(x) =, (.48) : L α (x) =, (.49) L α (x) = (α + ) x, (.5) L α (x) = x (α + )x + (α + )(α + ) (.5) L n n (x) = ( ) n xn n!, (.5)

3 : exp( tx t ) ( t) α+ = n= L α n(x)t n, (.53) nl α n(x) + (x n α + )L α n (x) (.54) +(n + α )L α n (x) =, (.55) x d dx Lα n(x) = nl α n(x) (n + α)l α n (x), (.56) 3. Morse and H. Feshbach[] (a) L α n(x)l α n e x x α dx = δ nn (α + n)!, (.57) n! (b) L α n(x) = (n + α)! n! e x x α d n dx n (xn+α e x ), (.58) [x d d + (α + x) dx dx + n]lα n(x) =, (.59) tx exp( t : ( t) = L α n(x) α+ (n + α)! tn, (.6) n= (x α n )L α (n + ) n(x) = (α + n + ) Lα n+(x) (α + n) L α n (x) (.6) x d dx Lα n(x) = (x α)l α n(x) + (n + )L α n+(x), (.6) : x α e x L α m(x)l α [(n + α)!] 3 n(x)dx = δ mn (.63) n!.4 Legendre polynomial [( x ) d dx x d dx + l(l + )]P l(x) =, (.64) P l (x) = d l l l! dx l (x ) l, (.65) : P (x) =, (.66) P (x) = x, (.67) P (x) = (3x ), (.68) P 3 (x) = (5x3 x), (.69) P 4 (x) = 8 (35x4 3x + 3), (.7)

4 P l () = ( ) l (l)! l (l!), (.7) P l+ () =, (.7) P l () =, (.73) P l ( ) = ( ) l, (.74) : lp l (x) = (l )xp l (x) (l )P l, (.75) : (x ) d dx P l(x) = l[xp l (x) P l (x)], (.76) l(l + ) = l + [P l+(x) P l (x)], (.77) = (l + )[P l+ (x) xp l (x)], (.78) P l (x)p l dx = δ ll l +, (.79) x k P l (x)dx = for k =,,,, l. (.8).5 Legendre associated polynomial.6 spherical harmonics Y lm (θ, ϕ) ( ) m+ m P m l (cos θ) π : sin θdθ π l + (l m )! 4π (l + m )! P m l (cos θ) e imϕ (.8) dϕ Ylm(θ, ϕ) Y l m (θ, ϕ) = δ ll δ mm. (.8) Y (θ, ϕ) = 4π, (.83) Y,+ (θ, ϕ) = 3 π sin θeiϕ, (.84) Y, (θ, ϕ) = 3 cos θ, (.85) π Y, (θ, ϕ) = 3 π sin θe iϕ, (.86) Y,+ (θ, ϕ) = 3 5 4 π sin θe iϕ = 3 5 8 π ( cos θ)eiϕ, (.87) Y,+ (θ, ϕ) = 3 5 π cos θ sin θeiϕ = 3 5 4 π sin θeiϕ, (.88)

5 Y, (θ, ϕ) = 5 4 π (3 cos θ ) = 5 ( + 3 cos θ), (.89) 8 π Y, (θ, ϕ) = 3 5 π cos θ sin θe iϕ = 3 5 4 π sin θe iϕ, (.9) Y, (θ, ϕ) = 3 5 4 π sin θe iϕ = 3 5 8 π ( cos θ)e iϕ, (.9) (.9) l + Y lm (, ) = 4π δ m, (.93) l + Y lm (, ϕ) = 4π δ m. (.94).7 [4].7. d du ν (z ) + ( z dz dz z )u = d u dz + du ν + ( )u =. (.95) z dz z J ν (z), N ν (z), H ν () (z), H ν () (z) H ν () (z),h ν () (z) 3 : J ν (z) = ( z ( ) n ( z )ν )n, (z ) (.96) n!γ(ν + n + ) n= : N ν (z) = Y ν (z) = cos νπj ν(z) J ν (z) (.97) sin νπ : J n (z) = ( ) n J n (z), N n (z) = ( ) n N n (z), ( n) (.98) (ν + )π : J ν (z) = {P (z) cos[z ] zπ 4 (ν + )π Q(z) sin[z ]} (.99) 4 = t k cos( kπ k= z + νπ + π ), (.) 4 P (z) + ( ) k (4ν )(4ν 3 ) (4ν (4k ) ) k= (k)!(8z) k Q(z) ( ) k (4ν )(4ν 3 ) (4ν (4k + ) ) k= (k + )!(8z) k+ t k = (k ) ν t k, t = (.) kz zπ z 7.5 +.3 ν.96. [9]

6.7. z d dz du ν (z ) ( + dz z )u = d u dz + du z dz ν ( + )u =. (.) z I ν (z) = e νπi/ J ν (iz) ( π < arg z < π/) (.3) = e 3νπi/ J ν (iz) (π/ < arg z < π) (.4) = ( z ) (z/) n [z ] (.5) n!γ(ν + n + ) n=

7. Â, ˆB, Ĉ A, B AB Ψ (AB)Ψ = A(BΨ) (.) AB Ψ B BΨ χ A Aχ AA = A, AAA = A 3, (.) A f(a) x f(x) {c n ; n =,,,, } f(x) = c + c x + c x + = c n x n. (.3) n= A f(a) f(a) = c + c A + c A + = c n A n. (.4) n= A e A = + A +! A + = n= n! An (.5) commutator [A, B] AB BA. (.6) A, B

8. Â, ˆB  = /Â, ˆB = / ˆB.  ˆB =  ( ˆB Â) ˆB = ˆB ( ˆB Â)  (.7)  ˆB = ˆB ˆB    ˆB =  ( ˆB Â) ˆB. (.8)  ˆB = ˆB ˆB  ˆB   = ˆB ( ˆB Â) Â. (.9).  ˆB =  ( + ˆB )  ˆB (.),ˆ ˆÂ = ˆ =  ˆ =   =  ( ˆB) + ˆB (.) Â. ( ˆB). [4] 3 84.3.3. A, B, C [A, B] AB BA, (.) [AB, C] = A [B, C] + [A, C] B (.3)

9.3..3.3 e A Be A = B + [B, A] +! [[B, A], A] + [[[B, A], A], A] +, (.4) 3! e A Be A = B + [A, B] +! [A, [A, B]] + [A, [A, [A, B]]] +. (.5) 3! if [[A, B], A] = [[A, B], B] = e A+B = e A e B e [A,B]/, (.6) = e B e A e [A,B]/ (.7) Campbell-Hausdorf X, Y log[e X e Y ] = (X + Y ) + [X, Y ] + ([X, [X, Y ]] + [Y, [Y, X]]) + (.8) e A+B+C = e A e Z ( ), (.9) Z (B + C) [A, B + C] [[A, B + C], A + B + C] + [] P.M. Morse and H. Feshbach, Method of Theoretical Physics, McGraw-Hill, 953,vol.I. [], I,. [3], II,. [4], III,. [5] L.I. Schiff,Quantum Mechanics,third edition, McGraw Hill,968,pp.69-7. [6] 99 [7] I 984 p.4. [8] 984 pp.49-5. [9] 99 [] 99 [] 984 pp.49-5.

[] 984 p.3. [3] J. Schwinger,Quantum Mechanics, Springer,,pp.8-9. [4] 977 [5] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, (translated from the Russian by Scripta Technica, INC.) Academic Press,977