JA.qxd

Similar documents

Note.tex 2008/09/19( )

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

meiji_resume_1.PDF


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

c 2009 i

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

chap9.dvi

untitled

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

201711grade1ouyou.pdf

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

05Mar2001_tune.dvi

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

Part () () Γ Part ,

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

untitled

all.dvi

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

pdf

I

7-12.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2 0.1 Introduction NMR 70% 1/2


スライド タイトルなし

i


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

数学の基礎訓練I

Microsoft Word - 11問題表紙(選択).docx

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +


30

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo

構造と連続体の力学基礎

Microsoft Word - 信号処理3.doc

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

Untitled

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google


プリント

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f


: , 2.0, 3.0, 2.0, (%) ( 2.

本文/目次(裏白)


( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

.. p.2/5

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Z: Q: R: C: sin 6 5 ζ a, b

December 28, 2018

振動と波動

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

( ) ,

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

I 1

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

ohpr.dvi

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

LLG-R8.Nisus.pdf

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Transcription:

Application Note 1432

J rmsj RJ pp J pp t, P σ J rms RJ t

(t) 1

ϕ (t) S (t) = P(2π f d t + ϕ (t)) S P f d ϕ (t) J ϕ 1 1 J [s] = ϕ [rad] J [UI] = ϕ [rad] 2π f d 2π Φ(t) 2π f d t ϕ (t) 1 d 1 d ƒ (t) = Φ(t) = ƒ d + ϕ (t). 2π dt 2π dt 1 d ƒ (t) = ƒ (t) ƒ d = ϕ (t) 2π dt 2

J pp J rms µσ J rms RJ σ J pp RJ RJ J pp J rms RJ J pp J rms RJ J pp J rms RJ J pp RJ J pp σ J pp RJ J pp RJ RJ σ J rms J RJ rms J pp pp J 3

J pp J RJ pp J TJ = n σ J TJ = n J r R m J s + J P D P J + J P D P J J pp J pp J ppj rms J rms RJ J pp J pp σ J RJ rms σ σ σ σ σ σ ϕ(t) A Appl sin(2π f J t) A out (f J ) X Tfer (f J ) A out (f J )/A Appl (f J ) ϕ (t) A Appl sin(2π f J t) A Tol (f J ) 4

5 J pp σ J pp σ

A Appl A Appl sin(2π f J t) X Tfer f J A Appl f J J TJ J RJ pp n J rms (t) 6

7 Σ

J NF R W J truth J meas R J truth J meas (1 100 R) J 9J N 2 F J > R 1+ R R 2 3J NF J > 1 (100 R) 2 R J min R J NF J R 8

J CR 3J NF J m 2 eas = J D 2 UT + J C 2R + ρ J DUT J CR ρ ρ ρ J CR /J DUT 1 J DUT J meas R f d f d J applied (t) A sin(2π f J t) J DUT (t) A' sin(2π f J t) J g (t) J g (t) 9

ϕ (t) V ref (t) A ref sin (2π f d t π/2) V DUT (t) A DUT sin(2π f d t ϕ (t)) π V(t) K ϕ sin (ϕ (t)) ϕ K ϕ sin(ϕ (t)) K ϕ ϕ (t) K ϕ 2 2 1 V rms ( f ) ϕ rms ( f ) S ϕ (f) = = --------[ rad2 / Hz ] 2 K ϕ f f f S ϕ (f) f ϕ 2 rms (f) ϕπ L(f) V DUT (t) A DUT sin(2π f d t ϕ (t)) L(f) 1 P ( f ) L( f ) = = 2P C f sin(2 f c t + (t)) sin(2 f c t + 0 ) sin(2 f c t + /2) K sin (t) K (t) 10

L ( f )[ 1 / Hz ] = 1 2 S ϕ ( f )[ rad2 / Hz ] J rms = f 2 ϕ 2 ( f ) rms df f 1 f ϕ rms(f)/ f L(f) J rms = f 2 f 1 S ϕ ( f )df = f 2 f 1 2L( f )df L(f) 11

L(f) L Random ( f ) = n = h n f n h n nn n n f 1 f 2 X Tfer ( f J ) A out (f J )/A Appl (f J ) µ 12

ϕ (t) sin(2π ft)/2π ft 13

J rms J pp X Tfer (f J ) A out (f J )/A Appl (f J ) 14

A Appl (f J ) 15

ϕ (t) J rms J pp 16

J pp J rms 17

t n T FS T n =, for n = 0, 1, 2,..., N 1, N n T FS N N t, P P t N N (t, P) J rms J rms RJ J rms J pp 18

N(t, P) (t µ) 2 Aexp [ ], 2σ 2 µ L, σ L µ R σ R A σ L σ R J µ R µ L N(t, P)/ t 0 2 N(t, P)/ t 2 0 N (t, P) 19

µ L σ L µ R σ R 20

(t) 1 2 (t T L ) 2 L BER RJ (t) = N L 2 σ L π t 2σ L L t T L BER RJ (t) = N L erfc ( ) 2σ L exp [ ] dt t 0 t T b 1 2T b t T L t T R T L T R J pp T L (T B T R ) (t) A sinusoidal t 1 2 π t A BER(t) = BER D LJ (t), 0 < t < T L {BER RJ (t), T L < t < T R R BER D J (t), T R < t < T B N L T L T R (t) T L T L σ R N L T R σ L N R (t) N L N R t T L t T R t T L T R t BER RJ (t) = N L erfc( ) + N Lerfc( ), 2σ L 2σ R 21

erf 1 (x) 1.192 0.6681 log(x) 0.0162 (log(x)) 2 t y A 0 A 1 t σ L σ R T L T R J r R m J s = 1 2 (σ L + σ R ) J P D P J = T L + (T B T R ). J TJ 14.1 J rms RJ J pp J TJ σ R σ L t T R t T L (t) (t) (t) (t) (t) (t) (t) (t) 22

J pp J rms J pp www.agilent.com/find/jitter µ 23

L(f) V noise tan( ϕ (t)) V noise /V carrier ϕ (t) ϕ (t) V noise /V carrier 1 2 2 1 2 V Noise rms / R 1 V Noise rms L(f) = ---- = 2 2 f V Carrier / R 2 f V Carrier 2 ϕ rms L(f) = 2 f L(f) = 1 2 S ϕ ( f ) L(f) S ϕ (f) L( f ) [ 1 / Hz ] = 1 2 S ϕ ( f )[ rad2 / Hz ] (L(f) 1 2 S ϕ (f)) V carrier V noise V noise V noise ϕ (t) S ϕ (f) T R t T L t 0 t' t' dt 1 2 (t T L ) 2 ρ (t ) dt = N L σ exp[ ] dt 2 L π 2σ L T L σ J RMS RJ N J pp t exp[ 1 2 (t T L ) ] 2 ΒΕR R LJ (t) = N L dt 2 σ L π t 2σ L Im (V) V(t) = (V Carrier + V(t)) expj(2 f c t + (t)) V Noise V Carrier 2 f c t Re (V) 24

µ (t T L )/( 2 σ) L 2 ΒΕR RJ (t) = N L e -u2 du π t T L 2 σ L 2 erf(t) = e -u2 du π 0 t 2 erfc(t) = 1 erf(t) = e -u2 du π t L t T L ΒΕR RJ (t) = N L erfc( ) 2σ L N L N R t T L t T R (t) T R T L ΒΕR R L J (T L ) = N L + N R erfc[ ] 2σ R T R T L ΒΕR R R J (T R ) = N L erfc[ ] + N R 2σ L ξ L/R erfc[(t R T L )/( 2σ L/R )] N L N R ΒΕR D L J (T L ) ξ R ΒΕR D R J (T R ) N L = 1 ξ R ξ L ΒΕR D R J (T R ) ξ L ΒΕR D L J (T L ) N R = 1 ξ R ξ L T R R T R t ΒΕR R J (t) = N R [ ] t T L erfc 2σ R T R T L ΒΕR D LJ (TL ) erfc[ ] ΒΕR R (TL )erfc( ) 2σ R t T L ΒΕR RJ (t) = ( T ) R T L T R T L 2σ L 1 erfc[ ] erfc [ ] 2σ R 2σ L T R T L ΒΕR D RJ (TR ) erfc[ ] ΒΕR L (TL ))erfc( 2σ L T R t ΒΕR RJ (t) = ( T ) R T L T R T L 2σ R 1 erfc[ ] erfc [ ] 2σ R 2σ L 25

(t) (t) r i t i r i t i t T ΒΕR RJ (t) = N erfc( ) 2σ ΒΕR RJ (t) t T 1 = erfc( ) N 2σ erf 1-1( (x) ΒΕR RJ (t) T 1 2erf ) 1 = + t N σ σ y A 0 A 1 tt A 0 /A 1 σ 1/A 1 r i -1( y i = 2erf ) 1 η = [y i (A 0 + A 1 N t)]2 i η χ dη/da 0 0 dη/da 1 0η y t 26

www.agilent.com/find/53310a www.agilent.com/find/jitter www.itu.int www.telcordia.com standards.ieee.org/getieee802 www.agilent.com/find/jitter www.agilent.com www.agilent.com/find/10ge www.agilent.com/find/10ge www.agilent.com/comms/bitalyzer www.boulder.nist.gov/timefreq/phase/properties/twelve.htm 27

28

29

www.agilent.com/find/emailupdates-japan www.agilent.com/find/connectivity April 28, 2003 5988-8425JA 0000-00DEP