eng10june10.dvi

Similar documents
main.dvi

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

2012専門分科会_new_4.pptx

xia2.dvi

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

I


D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

201711grade1ouyou.pdf

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

( ) ( )


25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

数学の基礎訓練I

4/15 No.

Note.tex 2008/09/19( )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

II 1 II 2012 II Gauss-Bonnet II

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

untitled

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

28 Horizontal angle correction using straight line detection in an equirectangular image

(1) (2) (3) (4) 1

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

JFE.dvi

1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :


' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

aso1p

X x X X Y X Y R n n n R n R n 0 n 1 B n := {x R n : x < 1} B n := {x R n : x 1} 0 n := (0,..., 0) R n R n 2 S 1 S 1 3 B 2 S 1 (manifold) 2 ( ) n 1 n p

kato-kuriki-2012-jjas-41-1.pdf

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

本文/目次(裏白)

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

untitled

02-量子力学の復習

Twist knot orbifold Chern-Simons

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

基礎数学I


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

inkiso.dvi

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

: , 2.0, 3.0, 2.0, (%) ( 2.

構造と連続体の力学基礎

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

D 1 l θ lsinθ y L D 2 2: D 1 y l sin θ (1.2) θ y (1.1) D 1 (1.2) (θ, y) π 0 π l sin θdθ π [0, π] 3 sin cos π l sin θdθ = l π 0 0 π Ldθ = L Ldθ sin θdθ

K E N Z OU

画像工学特論

n ( (


I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

untitled

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Transcription:

The Gauss-Bonnet type formulas for surfaces with singular points Masaaki Umehara Osaka University 1

2 1. Gaussian curvature K Figure 1. (Surfaces of K<0andK>0 L p (r) =the length of the geod. circle of radius r at p 3 K(p) = lim r 0 π ( ) 2πr Lp (r). r 3

3 2. The Gauss-Bonnet formula (local version) A C B ABC KdA = A + B + C π, A + B + C <π A + B + C >π (if K<0), (if K>0).

4 3. The Gauss-Bonnet formula (global version) Polygonal division of closed surfaces. (The Gauss-Bonnet formula) (3.1) KdA =2πχ(M 2 ), M 2 where χ(m 2 )=V E + F is the Euler number of the surface M 2.

4. Parallel surfaces 5 An immersion f = f(u, v) :(U; u, v) R 3 (U R 2 ), the unit normal vector ν(u, v) := f u(u, v) f v (u, v) f u (u, v) f v (u, v). For each real number t, f t (u, v) =f(u, v)+tν(u, v) is called a parallel surface of f. p is a singular pt of f t (f t ) u (p) (f t ) v (p) =0. Figure 2. a cuspidal edge and a swallowtail Cuspidal edges and swallowtails are generic singular points appeared on parallel surfaces. f C =(u 2,u 3,v), f S =(3u 4 + u 2 v, 4u 3 +2uv, v).

6 An ellipsoid: x 2 + y2 4 + z2 9 =1. Parallel surfaces of the ellipsoid are given as follows: Figure 3. the cases of t =0andt =1.2 Figure 4. the cases of t =2andt =3.2

7 5. Singular curvature κ s Figure 5. Surfaces of K<0 and K>0 The image of cuspidal edges consists of regular curves in R 3.Wedenoteitbyγ(s), where s is the arclength parameter. Figure 6. a( )-cuspidal edge and a (+)-cuspidal edge the singular curvature κ s (s) =ε(s)(geodesic curvature) = ε(s) det(ν(s),γ (s),γ (s)), where ε(s) = 1 (if the surface is bounded by a plane at γ(s)), 1 (otherwise).

8 6. Generic cuspidal edges A generic cuspidal edge: the osculating plane the tangent plane. In this case, K ± at the same time. Saji-Yamada-U. [7] K 0 = κ s 0. 1-1 -0.5 0.5 0 0-0.5-1 0.5 1 2 1 0-1 -2

7. Gauss-Bonnet formula of surfaces with singularity 9 M 2 ; a compact oriented 2-manifold f : M 2 R 3 ; a C -map having only cuspidal edges and swalowtails ν : M 2 S 2 ; the unit normal vector field (U; u, v); a (+)-oriented local coordinate M 2 the area density function λ := det(f u,f v,ν) λ(p) =0 p is a singular point area element da := λ du dv, signed area element dâ := λdu dv.

10 8. Two Gauss-Bonnet formulas Figure 7. a positive swallowtail Formulas given by Kossowski(02)and Langevin-Levitt-Rosenberg(95) KdA +2 κ s ds =2πχ(M 2 ), M 2 \Σ f Σ f 2deg(ν) = 1 Kd 2π M 2 \Σ f = χ(m + ) χ(m )+#SW + #SW, M + := {p M 2 ; da p = dâp}, M := {p M 2 ; da p = dâp}.

11 9. singular points of a map between 2-manifolds Maps between planes R 2 (u, v) f(u, v) =(x(u, v),y(u, v)) R 2, ( ) Singular points of f det x u (u, v) x v (u, v) y u (u, v) y v (u, v) =0. Generic singular points afold R 2 (u, v) (u 2,v) R 2, the singular set u =0, f(0,v)=(0,v) acusp R 2 (u, v) (uv + v 3,u) R 2, the singular set u = 3v 2, f( 3v 2,v)=( 2v 3, 3v 2 ) Figure 8. afoldandacusp

12 f = f(u, v) Singular curves of cuspidal edges and folds Figure 9. a fold and a cuspidal edge Singular curves of swallowtails and cusps Figure 10. a cusp and a swallowtail

13 10. Singularities of Gauss maps M 2 :an oriented compact manifold f : M 2 R 3 an immersion Singular points of ν : M 2 S 2 K f =0. Then f t = 1 (f + tν), t R. t lim t f t = ν, 2deg(ν) =χ(m t +) χ(m t )+#SW t + #SW t. In particular, Hence, 2deg(ν) =χ(m 2 )=χ(m t +)+χ(m t ). 2χ(M t )=#SW t + #SW t. Taking the limit t,wehavethat 2χ(M )=#SW + #SW.

14 The Gauss map ν satisfies 2χ(M )=#SW + #SW. If t, then the cuspidal edge collapses to a fold, and a swallowtail collapses to a cusp. In particular, #SW+ := #{(+)-cusps of ν}, #SW := #{( )-cusps of ν}. Since dâν = K f da f, da ν = K f da f, it holds that M = {p M 2 ; K f (p) < 0}. Thus (the Bleecker and Wilson formula [1]) 2χ({K f < 0}) = #positive cusps #negative cusps.

15 Figure 11. a symmetric torus and its perturbation A deformation of the rotationally symmetric torus f a (u, v) = (cos v(2 + ε(v)cosu), sin v(2 + ε(v)cosu), ε(v)sinu), where ε(v) :=1+acos v. a = 0 : the original torus a =4/5: χ({k <0}) =1 Figure 12. A parallel surface of f 4/5

16 11. A similar application The following identity holds for f t : M 2 R 3 K t da t +2 κ s ds =2πχ(M 2 ). M 2 \Σ ft Σ ft Taking t, we have that (Saji-Yamada-U. [10]) 1 K f da f = κ s ds, 2π {K<0} Σ ν where To prove the formula, we apply κ s := the singular curvature of ν = ±the geodesic curvature of ν > 0 if ν points Im(ν), < 0 otherwise. K ν dâν = KdA ν, K ν A ν = K f da f.

17 The intrinsic formulation of wave fronts (Saji-Yamada-U. [10]) The definition (E,,,D,ϕ) of coherent tangent bundle on M n : (1) E is a vector bundle of rank n over M n, (2) E has a inner product,, (3) D is a metric connection of (E,, ), (4) ϕ: TM n E is a bundle homomorphism s.t. D X ϕ(y ) D Y ϕ(x) =ϕ([x, Y ]), where X, Y are vector fields on M n. The pull-back of the metric, ds 2 ϕ := ϕ, is called the first fundamental form of ϕ. p M n ; ϕ-singular point Ker(ϕ p : T p M n E p ) {0}. coherent tangent bundle = generalized Riemannian manifold When (M n,g) is a Riemannian manifold, then E = TM n,, := g, D = g, ϕ =id. If f : M 2 R 3 is a wave front, then E = ν,, := g R 3, D = T, ϕ = df, (ψ = dν).

18 M 2 ; a compact oriented 2-manifold, (E,,, D, ϕ); an orientable coherent tangent bundle, μ Sec(E E \{0}) such that μ(e 1,e 2 ) = 1 for (+)-frame {e 1,e 2 } The intrinsic definition of the singular curvature κ s := sgn(dλ(η(t))) μ(d γ n(t),ϕ(γ )) ϕ(γ ) 3, where n(t) E γ(t) is the unit vector perpendicular to ϕ(γ )one. (u, v) a (+)-local coordinate on M 2 where Σ ϕ ; ϕ-singular set, dâ = λdu dv, da = λ du dv, ( λ := μ ϕ( u ),ϕ( ) v ). (χ E =) 1 Kd 2π = χ(m +) χ(m )+SW + SW, M 2 KdA +2 κ s dτ =2πχ(M 2 ). M 2 Σ ϕ p Σ ϕ is non-degenerate dλ(p) 0, p Σ ϕ ; A 2 -pt (intrinsic cuspidal edge) η γ (0) at p, p Σ ϕ ; A 3 -pt (intrinsic swallowtail) det(η, γ ) = 0 and det(η, γ ) =0atp.

Examples of coherent tangent bundle: 19 (1) Wave fronts as a hypersurface of Riem. manifold, (2) Smooth maps between n-manifolds M n ; an orientable manifold (N n,g); an orientable Riemannian manifold f : M n (N n,g); C -map, E f := f TN n,, := g Ef, D; induced connection. ϕ := df : TM n E f := f TN n, Figure 13. a fold and a cuspidal edge Figure 14. a cusp and a swallowtail

20 An application of the intrinsic G-B formula f : M 2 R 3 ; a strictly convex surface, ξ : M 2 R 3 ; the affine normal map. X Y = D X Y + h(x, Y )ξ, D X ξ = α(x), where α : TM 2 TM 2 We set M 2 := {p M 2 ;det(α p ) < 0}, then (Saji-Yamada-U. [9]) 2χ(M )=#SW 2 + (ξ) #SW (ξ).

References [1] D. Bleecker and L. Wilson, Stability of Gauss maps, Illinois J. of Math. 22 (1978) 279 289. [2] M. Kossowski, The Boy-Gauss-Bonnet theorems for C -singular surfaces with limiting tangent bundle, Annals of Global Analysis and Geometry 21 (2002), 19 29. [3] M. Kokubu, W. Rossman, K. Saji, M. Umehara and K. Yamada, Singularities of flat fronts in hyperbolic 3-space, PacificJ. Math. 221 (2005), 303 351. [4] R. Langevin, G. Levitt and H. Rosenberg, Classes d homotopie de surfaces avec rebroussements et queues d aronde dans R 3, Canad. J. Math. 47 (1995), 544 572. [5] K. Saji, Criteria for singularities of smooth maps from the plane into the plane and their applications, preprint. [6] K. Saji, M. Umehara and K. Yamada, Behavior of corank one singular points on wave fronts, Kyushu Journal of Mathematics 62 (2008), 259 280. [7] K. Saji, M. Umehara and K. Yamada, Geometry of fronts, Ann. of Math. 169 (2009), 491-529. [8] K. Saji, M. Umehara and K. Yamada, A k singularities of wave fronts, Mathematical Proceedings of the Cambridge Philosophical Society, 146 (2009), 731-746. [9] K. Saji, M. Umehara and K. Yamada, Singularities of Blaschke normal maps of convex surfaces, C.R. Acad. Sxi. Paris. Ser. I 348 (2010), 665-668. [10] K. Saji, M. Umehara and K. Yamada, The intrinsic duality on wave fronts, preprint, arxiv:0910.3456. [11], 38 (2009). ( Tel 03-3816-3724, fax: 03-3816-3717).) [12],, (2002). 21