II

Similar documents
II


IA

Schrödinger I

QMI_10.dvi

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

QMI13a.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Planck Bohr

30

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

06-...t.Q V4.qxd

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

( ) ,

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

Maxwell

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

all.dvi

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

notes.dvi


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

( )

master.dvi

量子力学 問題



(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

C: PC H19 A5 2.BUN Ohm s law

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (


( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1



I ( ) 2019

プランクの公式と量子化

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

B ver B

i

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ


ssp2_fixed.dvi

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

chap1.dvi

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)


β

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a


LLG-R8.Nisus.pdf

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =


The Physics of Atmospheres CAPTER :

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Z: Q: R: C: sin 6 5 ζ a, b

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

DVIOUT-fujin

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

QMI_09.dvi

0 4/

QMI_10.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Gmech08.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

85 4

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

i Γ

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.


Xray.dvi

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =


Maxwell

Transcription:

II 28 5 31

3 I 5 1 7 1.1.......................... 7 1.1.1 ( )................ 7 1.1.2........................ 12 1.1.3................... 13 1.1.4 ( )................. 14 1.1.5................... 15 1.2.......................... 15 2 17 2.1......................... 17 2.1.1................. 18 2.1.2................. 19 2.1.3 2.................. 20 2.1.4.......................... 21 2.1.5 Rayleigh-Jeans.......... 23 2.2......................... 25 2.2.1 Einstein............... 25 2.2.2 Planck.............. 27 2.2.3 Debye.................... 28 3 29 3.1.......................... 29 3.1.1..................... 29 3.1.2.......................... 29 3.1.3.......................... 29 3.1.4 α......................... 30

4 3.1.5......................... 30 3.1.6 Zeeman..................... 30 3.1.7 α.................... 31 3.2.................... 31 3.3 Bohr.......................... 32 3.3.1 Bohr...................... 32 3.3.2...................... 33 3.3.3........................... 33 3.4 de Broglie......................... 35 3.4.1 de Broglie.............. 36 3.4.2................... 36 3.5......................... 36

I

7 1 19 X 19 ( ) ( ) MRI 1.1 1.1.1 ( ) (Planck 1 ) (1900) E = nhν (1.1) 1 Max Karl Ernst Ludwig Planck (1858-1947) 1918

8 1 (E ν n 0 h ) h ( [ ] [ ] 2 [ ] 1 = [ ] [ ] = [ ] [ ] ) h = 6.626068 10 34 J s (1.2) 1. Stefan-Boltzmann J. Stefan (1879) L. Boltzmann 2 (1884) σ Stefan-Boltzmann 2. Wien (1893) j = σt 4 (1.3) 5.670400 10 8 W m 2 K 4 W. Wien 3 λ max λ max = b T (1.4) 2 Ludwig Eduard Boltzmann (1844-1906) 3 Wilhelm Wien (1864-1928) 1911

1.1. 9 3. Wien (1896) Wien ( ) U(ν)dν = 8πk Bβ c 3 exp( βν/t )ν 3 dν (1.5) k B Boltzmann k B = 1.3806505 10 23 J/K β 4. Rayleigh-Jeans (1900,1905) Rayleigh 4 U(ν)dν = 8πk BT c 3 ν 2 dν (1.6) 5. Planck Planck Wien Rayleigh-Jeans U(ν)dν = 8πh c 3 1 exp(hν/k B T ) 1 ν3 dν (1.7) (1900 ) 4 John William Strutt Rayleigh (1842-1919) 1904

10 1 6. Planck Planck ( ) U(ν)dν = 8π ( ν ) c F ν 3 dν (1.8) 3 T F Wien Planck F (x) = k B β exp( βx) F (x) = h = k B β k B β exp(βx) 1 7. Planck Planck ( ) 8. Rayleigh-Jeans Wien Planck 2 (Einstein 5, 1905) E = 1 2 mv2 = hν W (1.9) : 5 Albert Einstein (1879-1955) 1921

1.1. 11 1. Hertz 6 (1887) 2. Hallwacks (1888) Hallwacks 7 3. J.J.Thomson 8 (1899) (e/m) 4. Lenard (1902) Lenard 9 (a) 1 (b) (c) 1 () ( ) 5. Einstein (1905) 6 Heinrich Hertz (1857-1694) ( ) 7 Wilhelm Ludwig Franz Hallwachs (1859-1922) 8 Joseph John Thomson (1856-1940) 1906 9 Philipp Eduard Anton von Lénárd (1862-1947) 1905

12 1 6. Millikan (1916) Millikan 10 Einstein Einstein (1.9) h Planck h Einstein p = h/λ (1.10) (p λ ) Compton 11 X X (Compton) (1923) CCD Wilson, Bothe 1.1.2 1. Dulong 12 -Petit 13 (1819) C V = 3R (1.11) 10 Robert Andrews Millikan (1868-1953) 1923 11 Arthur Holly Compton(1892-1962) 1927 12 Pierre Louis Dulong (1785-1338) ( ) 13 Alexis Thérèse Petit (1791-1820)

1.1. 13 0 2. Einstein (1907) Dulong-Petit 3. Debye 14 (1912) Einstein 1.1.3 1 Balmer 15 (1885) 4 9 5 h, 16 12 h, 25 21 h, 36 32 h, h = 3.6456 10 7 m λ = n2 h n = 3, 4, 5, 6, (1.12) n 2 4 14 Peter Joseph William Debye (1884-1966) 1936 15 Johann Jakob Balmer (1825-1898) ( )

14 1 Rydberg 16 1 λ = 1 R n: (1.13) λ (n + b) 2 (1888) λ Rydberg R (Rydberg ) R = 1.09737 10 7 m 1 Balmer R = 4/h b Rydberg 1 λ = R ( 1 (m + a) 2 1 (n + b) 2 ) n, m: (1.14) Rydberg (1890) Rydberg a = b = 0 ( 1 1 λ = R m 1 ) 2 n 2 (1.15) Balmer m = 2 m = 1 Lyman 17 (1906) m = 3 Paschen (1908), C. H. F. Paschen) m = 4 Blackett (1922) 1.1.4 ( ) (de Broglie) (1923) (Davisson, Germer) (Ni 16 Johannes Robert Rydberg (1854-1919) 17 Theodore Lyman (1874-1954)

1.2. 15 )(1927) (1928) p k(= 2π λ ) = p ħ (1.16) k ( λ) ( ) (Bonse, 1974) 1.1.5 (Zeeman) (1896)( ) (Stern, Gerlach) (1922) 1.2 1. 2. : ( ) 3. 4. NMR,MRI:

17 2 2.1 q 1, q 2,, q f p 1, p 2,, p f (f ) {q} {p} {q} {p} E(q 1, q 2,, q f ; p 1, p 2,, p f ) q 1 q 1 + dq 1 2 q 2 q 2 + dq 2, f q f q f + dq f p 1 p 1 + dp 1, f p f p f + dp f

18 2 P (q 1, q 2,, q f ; p 1, p 2,, p f )dq 1 dq 2 dq f dp 1 dp 2 dp f ( = A exp 1 ) k B T E(q 1, q 2,, q f ; p 1, p 2,, p f ) dq 1 dq 2 dq f dp 1 dp 2 dp f (2.1) ( Liouville ) A ( A 1 = exp 1 ) k B T E(q 1,, q f ; p 1,, p f ) dq 1 dq f dp 1 dp f (2.2) T k B k B = 1.3806488(13) 10 23 JK 1 2.1.1 ( ) T k B T/2 E kin = α 1 p 2 1 + + α s p 2 s + + α f p 2 f (2.3) α s p 2 s s α s ( ) s

2.1. 19 α s p 2 s α s p 2 s = A α s p 2 s exp ( = A α s p 2 s exp ( 1 ) k B T E(q 1,, q f ; p 1,, p f ) ( f )) 1 k B T s=1 α s p 2 s + V dq 1 dq f dp 1 dp f dq 1 dq f dp 1 dp f (2.4) V {q} ( I = α s p 2 s exp 1 ) k B T α sp 2 s dp s (2.5) I = k BT p s exp 2 p s = k BT exp 2 ( 1 ( 1 k B T α sp 2 s ) dp s k B T α sp 2 s ) dp s (2.6) ( ) α s p 2 s = A k ( ( f )) BT exp 1 α s p 2 s + V dq 1 dq f dp 1 dp f 2 k B T s=1 A (2.2) (2.7) α s p 2 s = 1 2 k BT (2.8) (2.8) 1 f s 2.1.2 1 1 T

20 2 ( E = E kin = N A i=1 1 2m (p2 ix + p 2 iy + p 2 iz) (2.9) m p ix, p iy, p iz i x, y z N A 1 ( ) N A = 6.02214129(27) 10 23 mol 1 (2.10) (2.9) (2.3) 1 2m p2 ix = 1 2m p2 iy = 1 2m p2 iz = 1 2 k BT (2.11) E kin = 1 2m ( p2 ix + p 2 iy + p 2 iz ) = 3 2 k BT (2.12) 1 U = 3 2 N Ak B T (2.13) R = N A k B R U = 3 RT (2.14) 2 C V = 3 2 R (2.15) 2.1.3 2 2

2.1. 21 3 ( ) 2 2 x, y, z θ ϕ 5 p x, p y, p z, p θ, p ϕ I H = 1 2m (p2 x + p 2 y + p 2 z) + 1 ( ) p 2 θ + p2 ϕ 2I sin 2 (2.16) θ (2.3) 1 E = 1 2m ( p2 x + p 2 y + p 2 z ) + 1 ( p 2 ) p 2 ϕ 2I θ + sin 2 θ = 5 2 k BT (2.17) U = 5 RT (2.18) 2 C V = 5 2 R (2.19) 2.1.4 0 s q s, p s E s = a s q 2 s + b s p 2 s (2.20)

22 2 2.1: 1 2 b s p 2 s = 1 2 k BT (2.21) E s = a s q 2 s + b s p 2 s = k B T (2.22) 1 1 f E = fk B T (2.23) 1 N A f = 3N A 6 (2.24)

2.1. 23 3N A N A 6 3, 3 N 1 f = 3N A (2.25) 1 U = 3N A k B T = 3RT (2.26) C = 3R (2.27) 2.1.5 Rayleigh-Jeans Maxwell f = 3N A ν ν + dν Z(ν)dν L L L 3 1 L ν ν + dν L 2L, 2L/2, 2L/3,, 2L/s, c ν s = s c, s = 1, 2, (2.28) 2L

24 2 = c/2l ν ν + dν Z(ν)dν = dν = 2L c dν (2.29) 3 3 s x, s y, s z (2.28) c ν sx,s y,s z = s 2 x + s 2 y + s 2 z (2.30) 2L 3 3 3 3 x, y, z x = c 2L s x, y = c 2L s y, z = c 2L s z (2.31) s x, s y, s z c 3 /(2L) 3 r = c x 2 + y 2 + z 2 = s 2 x + s 2 y + s 2 z (2.32) 2L r ν sx,s y,s z ν ν + dν xyz ν ν + dν 2 s x, s y, s z 1/8) 2 Z(ν)dν 3 = c 3 /(2L) 3 4πν 2 dν/8 Z(ν)dν = πν2 dν 2 3 = 4πL3 c 3 ν 2 dν (2.33) c 2 Z(ν) (2.33) 2 Z(ν)dν = 8πL3 c 3 ν 2 dν (2.34)

2.2. 25 k B T ν ν + dν E(ν)dν = Z(ν)k B T dν = 8πL3 c 3 k B T ν 2 dν (2.35) Rayleigh-Jeans U(ν) = 8πk BT c 3 ν 2 dν (2.36) 2.2 A exp( E n /k B T ) (2.37) A 1 = n exp( E n /k B T ) (2.38) 2.2.1 Einstein N 3 3 3N ν (2.20) ν s = a s b s /π ϵ n = nhν (n = 0, 1, 2 ) (2.39)

26 2 2.2: Einstein ϵ = A nhν exp( nhν/k B T ) n=0 = A x (exp( hνx)) n n=0 = A 1 x 1 exp( hνx) hν exp( hνx) = A (1 exp( hνx)) 2 (1/k B T = x ) = A hν exp( hν/k BT ) (1 exp( hν/k B T )) 2 (2.40) n k=0 ar k = a(1 rn+1 ) 1 r (r 1) 1/A = exp( nhν/k B T ) = n=0 1 1 exp( hν/k B T ) (2.41)

2.2. 27 ϵ = hν exp( hν/k BT ) 1 exp( hν/k B T ) = hν exp(hν/k B T ) 1 (2.42) 1 E = 3N A ϵ = 3N A hν exp(hν/k B T ) 1 (2.43) 1. T exp(hν/k B T ) 1 + hν/k B T E 3N A hν (1 + hν/k B T ) 1 = 3N Ak B T (2.44) Dulong-Petit 2. T 0 exp(hν/k B T ) 1 E 3N A hν exp(hν/k B T ) = 3N Ahν exp( hν/k B T ) 0 (2.45) (Debye ) Einstein 2.2.2 Planck ν ν + dν (2.34) Z(ν)dν = 8πL3 c 3 ν 2 dν (2.46)

28 2, (2.42) ν ν + dν E(ν)dν = hν Z(ν)dν (2.47) exp(hν/k B T ) 1 U(ν)dν = 8πh c 3 1 exp(hν/k B T ) 1 ν3 dν (2.48) Planck 2.2.3 Debye

29 3 3.1 3.1.1 Loschmidt 1 (1865) (Avogadro constant) A. Einstein (1905) J. Perrin 2 (1908) 3.1.2 J. J. Thomson e/m (1897) Millikan Fletcher 3 e (1909-1913) 3.1.3 Goldstein 4 (1886) J. J. Thomson Goldstein 1 Johann Josef Loschmidt (1821-1895) 2 Jean Baptiste Perrin (1870-1942) (1926) 3 Harvey Fletcher (1884-1981) 4 Eugen Goldstein (1850-1930)

30 3 ( ) W. Wien e/m (1898) E. Rutherford 5 1918 α 3.1.4 α α 2 2 1 Rutherford 1898 α β 1899 α β 1902,1903 Rutherford α 3.1.5 Chadwick 1932 3.1.6 Zeeman Zeeman 6 Zeeman D (1896-1897) H. A. Lorentz Larmor 7 e/m e/m 5 Ernest Rutherford (1871-1937) 1908 6 Pieter Zeeman (1865-1943) 1902 7 Joseph Larmor (1857-1942)

3.2. 31 3.1.7 α Geiger 8 Marsden 9 Rutherford 1909 α (ZnS) α α α Rutherford 1911 3.2 J = pdq (3.1) ( ) Delaunay 10 1, m F = kq (3.2) H = p2 2m + k 2 q2 (3.3) dq dt = H p = p m, (3.4) dp dt = H = kq q (3.5) 8 Johannes (Hans) Wilhelm Geiger (1882-1945) 9 Ernest Marsden (1889-1970) 10 Charles-Eugène Delaunay (1816-1872)

32 3 q = A sin(ωt + α), (3.6) p = mωa cos(ωt + α) (3.7) A α ω( 2πν) ω = k m (3.8) E = p2 2m + k 2 q2 (mωa cos(ωt + α))2 = 2m + mω2 (A sin(ωt + α))2 2 = 1 2 mω2 A 2 (3.9) ( ) pdq = mωa cos(ωt + α)d(a sin(ωt + α)) 2π/ω = mω 2 A 2 cos(ωt + α) 2 dt = mω 2 A 2 1 2 = 2πE ω 0 = E ν 2π ω (3.10) 3.3 Bohr 3.3.1 Bohr Bohr 11 (1913) 11 Niels Henrik David Bohr (1885-1962) 1922

3.3. Bohr 33 1. E 1, E 2, E 3,... 2. ν hν = E m E n (3.11) 3. 3.3.2 (quantum condition) pdq = nh (n = 0, 1, 2, 3, ) (3.12) q p Bohr 1913 de Broglie ( (3.29) ). 3.3.3 1 1 Bohr (3.12) (3.10) E ν = nh (3.13)

34 3 E = nhν (3.14) ħ h 2π (3.15) E = nħω (3.16) ω r p q pdq = p 2πr = nh (3.17) e e e 2 4πϵ 0 r 2 (3.18) m v2 r = p = mv 2πpr = nh n = 1 e2 4πϵ 0 r 2 (3.19) r = 4πϵ 0ħ 2 me 2 n2 (3.20) a = 4πϵ 0ħ 2 me 2 (3.21)

3.4. de Broglie 35 E p 2 /2m e 2 /4πϵ 0 r E = p2 2m e2 4πϵ 0 r (3.22) r = n 2 a e2 E = (3.23) 8πϵ 0 an 2 m n ν ( hν = e2 1 8πϵ 0 a n 1 ) 2 m 2 (3.24) Rydberg R = e 2 8πhϵ 0 ac = me4 8h 3 ϵ 2 0c (3.25) 3.4 de Broglie ν λ) E p E = hν, p = h λ (3.26) ( h = 6.626 10 34 [J s] 0 E = c p (1) ν = E h, λ = h p (3.27) de Broglie 12 (1924) 12 Louis de Broglie (1892-1987) 1929

36 3 3.4.1 de Broglie Bohr de Broglie r de Broglie λ λ = h/p 2πr = nλ (n = 0, 1, 2, 3, ) (3.28) pr = nħ (3.29) pr ħ Bohr 3.4.2 3.5 Bohr Heisenberg 13 (1925) de Broglie Schrödinger 14 (1926) (?) Lanczos 15 ( ) Schrödinger,Lanczos,Pauli 16 Schrödinger Heisenberg 13 Werner Heisenberg (1901-9976) 1932 14 Erwin Rudolf Josef Alexander Schrödinger (1887-1961) 1933 15 Cornelius Lanczos (1893-1974) 16 Wolfgang Ernst Pauli (1900-1958) 1945

3.5. 37 Heisenberg Feynman 17 17 Richard Phillips Feynman (1918-1988) 1965