iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

Similar documents
δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

untitled

30

main.dvi

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

master.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

chap1.dvi

現代物理化学 1-1(4)16.ppt

2000年度『数学展望 I』講義録


II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k


// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

The Physics of Atmospheres CAPTER :

Maxwell


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

untitled



5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

December 28, 2018

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

( ) ,

all.dvi

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

K 1 mk(

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

Part () () Γ Part ,

untitled

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

ଗȨɍɫȮĘർǻ 図 : a)3 次元自由粒子の波数空間におけるエネルギー固有値の分布の様子 b) マクロなサイズの系 L ) における W E) と ΩE) の対応 として与えられる 周期境界条件を満たす波数 kn は kn = πn, L n = 0, ±, ±, 7) となる 長さ L の有限

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

A

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)


linearal1.dvi

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

0201

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

プログラム

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

TOP URL 1

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat


行列代数2010A

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (


I ( ) 2019



Z...QXD (Page 1)

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

振動と波動

genron-3

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (


70 : 20 : A B (20 ) (30 ) 50 1

ii

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()]

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Transcription:

4 4 9............................................... 3.3......................... 4.4................. 5.5............................ 7 9..................... 9.............................3................................4..........................5.............................6........................... 3 4 3............................. 4 3............. 6 3.3...................... 7 3.4........................ 9 3 e-mail: nishitani@mtl.kyoto-u.ac.jp

( ) ( )W k B = k B ln W () exp( E i /k B T ). W N V E = N i= p i m () N N 3 6N N 6N 6N... q p q p > h (3) h W = N! ( ) N h 3 dq N dp N = N! ( ) V N h 3 dp N (4) N! N N! E E N(E) N(E + E) N(E) dn(e) E (5) de

q p : N(E) R N V N V N = (πr ) N/ NΓ(N/) (6) Γ Γ(n) =(n )! R = me N 3N V 3N = (πme)3n/ (7) 3N Γ(3N/) 4 W = N! ( V h 3 ) N (πm) 3N/ Γ(3N/) E 3N (8). (II) (I) (E T = E I + E II ) E T W (E T ) I E I W I (E I ) II E II W II (E T E I ) E I E II P (E I ) P (E I )= W I(E I )W II (E T E I ) W (E T ) (9) 3

E I P (E I ) dp (E I ) = dw I(E I ) W II (E T E I ) de I de I W (E T ) + dw II(E T E I ) W I (E I ) =. () de I W (E T ) (de I = de II ) dw I (E I ) = W I (E I ) de I dw II (E II ) () W II (E II ) de II dlnw I (E I ) de I = dlnw II(E II ) de II () dlnw II (E II ) de II = 3N I E I = k B T (3) (N 3N/ 3N/ ) E/N =3/ k B T E = T (4) W ( ) dlnw =d (5) kb = k B ln W (6).3 canonical ensemble() exp( E i /k B T ) P (E) P (E I + E II ) P (E I )P (E II ) (7) 4

(II) (I) E T = E I + E II (I) i p i (II) E II W II (E II ) E I = E i i p i p i = W i(e i )W II (E T E i ). (8) W (E T ) (9) W i E I i p i p i W II (E T E i ) (9) ln p i =ln W II (E T E i ) + const () const (II) (I) E T >> E i ln W II (E T E i ) ln W II (E T E i ) ln W II (E T ) dlnw II(E) E i () de i 3 [ p i exp dlnw ] ( II(E) E i =exp E ) i () de k B T Z p i = ( Z exp E ) i (3) k B T Z = ( exp E ) i (4) k i B T (partition function).4 ln Z dlnz dt = k B T Ei e E i/k B T e E i /k B T 5 = E (5) k B T

F = E T (6) F/T ( ) F d T = ( ) E d d T = E T dt + de d T (7) de = T d P dv (8) ( ) F d = E T T dt P dv (9) T E = T T ( F T ) V (3) 5 F = k B T ln Z (3) Z =e F/k BT (3) (E E ) = E E = ( E Z i e E i/k B T ) Ei e E i/k B T (33) Z Ē dē dt = d Ei e E i/k B T dt { Z = k B T Z E i e E i/k B T ( Z ) } Ei e E i/k B T (34) dē dt = k B T (E E ) (35) 35 6

.5 Einstein Einstein (a) (b) : (a) (b)einstein ( E n = n + ) hω (36) ω m K ω = K/m N 3 3N 3N ( E = n i + ) hω (37) i= Z = n = n 3N = e En i k BT = n i = e (n i+/) hω k B T 3N (38) n= x n = x (39) ( ) e hω/k B T 3N Z = e hω/k (4) BT 7

(3) F = k B T ln Z = 3k B TN ln ( e hω/k B T e hω/k BT (5) (35) +e hω/k BT ) (4) E = k B T dlnz dt =3N hω e hω/k (4) BT C = de ( ) hω dt =3Nk e hω/k BT B ( k B T e hω/k B T ) (43) 3 Free Energy [/3Nhw] - Temperature [k/hw] Energy [/3Nhw] Temperature [k/hw] pecific heat [/3Nk] Temperature [k/hw] 3: Einstein N A C = 3N A k B =3R (44) (Dulong-Petit) exp Debye 4: 8

( ). ( ) F F = F I (N I,T,V I )+F II (N II,T,V II ) (45) F [ ( FI ) ( ) ] (N I ) FII (N N I ) δf = δn I + = N I T,V N I T,V [ ( ) ( ) ] FI FII δn I = (46) N I N II ( ) F N T,V T,V T,V = µ (47) F (N,T,p) =F (N,T,V )+pv (48) T,p N ( ) = N T,p ( ) F + N T,p ( ) F V N,T ( ) V + p N T,p ( ) V N T,p (49) p = ( F/ V ) N,T ( ) = µ (5) N T,p 9

µ = µn (5) T,p N (αn,t,p) =α(n,t,p) (5) α (αn,t,p) = (αn,t,p) αn α αn α= α = (N,T,p) N (53) N µn (5) = µ i N i (54) i N i x i = i µ i x i (55). T p n m f = m + n (56) mn m +mn m (57) i j µ (j) i µ () = µ () = = µ (m) = µ µ () = µ () = = µ (m) = µ µ () n = µ() n = = µ(m) n = µ n (58)

n(m ) f f =+mn m n(m ) = m + n (59) f= m + n.3 I II (E I <EII ) (KI >K II ) Einstein?? I II Free Energy Phase I Ttr Temperature Phase II 5: (I) (II) Einstein I II phase transition T tr I (T tr )= II (T tr ) (6) = H T tr = (6)

H II H I = T tr ( II I ) (6) II I > I II II I (latent heat) (first-order transition) (second-order transition).4 C p H H(T )=H + T T C p (T )dt (63) H T T T C p (T ) (T )= + dt (64) T T f ncal/k/mol 8.4nJ/K/mol Richards rule n (9 J/K/g-atom) ( 4J/K/g-atom) ( 3 J/K/g-atom).5 6 I (undercooled liquid) (metastable equilibirum) Fe-Fe 3 C

I Tm[II] II Ttr Tm[stable] 6:.6 H O 7 H,O H +/O H O 7: H O - (P-T diagram) f =3 m (65) m = f = - f =3 = 3 m =3 3

f = T 3 (triple point) 3 (critical point) A,B (Clausius-Clapeyron) dp dt = V (66) d = dt + V dp (67) A dt + V A dp = B dt + V B dp (68) dp/dt P-T P-T 3 A B ( ) 3. (solution) (solid solution) segregation limit, A, B A, B A,B A,B x A,x B = x A A + x B B (69) 4

(a) (b) A T H = Ω x x < A B Free Energy ideal AB B µ B Ω= Ω> µ A Ω< x 8: (a) (b) segregation limit A,B N A,B N A,N B W = N! N A!N B! (7) (ln N! N ln N N) ln W = (N ln N N) (N A ln N A N A ) (N B ln N B N B ) = (N A + N B )lnn N A ln N A N B ln N B (7) N = N A + N B x A = N A /N, x B = N B /N = k B ln W = R(x A ln x A + x B ln x B ) (7) N R = k B N = AB = T = RT (x A ln x A + x B ln x B ) (73) (ideal solution) H (PV) (E) H = PV + E E A A, B B, A B i j N ij, e ij E AB = N AA e AA + N BB e BB + N AB e AB (74) z (coordination number) A B zx B A 5

Nx A N AB Nzx A x B A A B B N AA =/Nzx A,N BB =/Nzx B / E AB = Nzx Ae AA + Nzx Be BB + Nzx A x B e AB = Nzx A( x B )e AA + Nzx B( x A )e BB + Nzx A x B e AB = Nzx Ae AA + ( Nzx Be BB + Nzx A x B e AB e ) AA + e BB (75) segregation limit ( H = Nz e AB e ) AA + e BB x A x B =Ωx A x B (76) Ω (interaction parameter) m = x A A + x B B +Ωx A x B + RT (x A ln x A + x B ln x B ) (77) (regular solution) Ω < A B A A B B A B Ω > A B Ω = 4 8 3. (excess free energy) EX m = m ideal m =Ωx Ax B (78) Ω Ω=Ω +Ω x B (sub-regular solution) l = x A µ l A + x Bµ l B (79) 6

x =.4 A,B µ l A,µl B x = x = A µ A = A + RT ln x A (8) µ A = A + RT ln a A = A + RT ln γ Ax A (8) a A,γ A (activity) (activity coefficient) EX m = RT (x A ln γ A + x B ln γ B ) (8) a A a B aa a A a B a B x x 9: 8(b) (a)ω <, (b)ω > (b) 3.3 A?? T fa H fa = T fa fa (83) 7

T fa µ A µ A = H fa T fa (84) µ A (T )= B µ A (T )= H fa T fa (85) µ B (T )= H fb T fb (86) A,B T fa =5K, T fb =K H fa =.47KJ/mol, H fb = 8.3KJ/mol Ω = Ω =KJ/mol A B 73 m = x A µ A + x B µ B + m (87) = x Aµ A + x Bµ B + m (88) µ A (T )=µ B (T )= (a)t =5K A (b)t =3K (c) µ A = µ A µ B = µ B (89) p, q a p q p q (c) A T =K 8

(a) T=5K Free Energy [kj/mol] - (b) 5 T=3K (d) Free Energy [kj/mol] -6.5-7 -7.5 T=3K Free Energy [kj/mol] -5 - (e) -8.3 a q mole fraction B p +.5 (c) Free Energy [kj/mol] -5 - + T=K + mole fraction B Temperature [K] 6 8 4 p + () q () mole fraction B () : (a),(b),(c) (d) (b) (e).(e) (solidus) (liquidus) f = m n + m =, n = f = f = f,f.(d) f : f = q a q p : a p (9) q p (lever rule) 3.4 (Ω =6.6kJ/mol) 9

5 6 Free Energy [kj/mol] - T=6K Temperature [K] 4 8 b a c d g e f h i j k Free Energy [kj/mol] 4 - -4 T=9K e f g h Free Energy [kj/mol] T=3K 6 l m 4..4.6.8 mole fraction B 6 Free Energy [kj/mol] 4 T=753K - a 4 b T=K 4 () - i j k T=6K Free Energy [kj/mol] - -4 c d Temperature [K] 8 6 () + () + () + () () Free Energy [kj/mol] 5 l m + () 4..4.6.8 mole fraction B : 753K 3 f = (eutectic temperature) (eutectic composition) (maximum solubility limit) A,B α β 5 5 5(a) T 5(b)

: Fe-Fe 3 C