all.dvi

Similar documents
5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

30

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Maxwell

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

i Γ

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

現代物理化学 2-1(9)16.ppt

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

master.dvi

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

第10章 アイソパラメトリック要素

i 18 2H 2 + O 2 2H 2 + ( ) 3K

IA

2,200 WEB * Ξ ( ) η ( ) DC 1.5 i

pdf

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat


chap9.dvi

TOP URL 1

( ) ( )


量子力学 問題

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

QMI13a.dvi

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

QMI_10.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

: , 2.0, 3.0, 2.0, (%) ( 2.

19 /

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

Microsoft Word - 11問題表紙(選択).docx

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

all.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

chap03.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

Note.tex 2008/09/19( )

201711grade1ouyou.pdf

7-12.dvi

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1


2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

phs.dvi

現代物理化学 1-1(4)16.ppt

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

Gmech08.dvi

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

構造と連続体の力学基礎


S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)


II 2 II


1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x


September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

8.3 ( ) Intrinsic ( ) (1 ) V v i V {e 1,..., e n } V v V v = v 1 e v n e n = v i e i V V V V w i V {f 1,..., f n } V w 1

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

v er.1/ c /(21)

( ) I( ) TA: ( M2)

untitled

Transcription:

I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble average j w j Tr ˆρ en = j w j =1 w j 1 k w k w k =1 k 1. Entropy ˆη ˆη = ln ˆρ = j ln w j j j 1

S ˆη S = ˆη (= Tr ˆρˆη) = ln ˆρ = Tr ˆρln ˆρ = j w j ln w j S = S.1 micro canonical ensemble, E,N,V V N E E E k Ω(E) k, k =1,, Ω(E) E δe (macro) δe Ω(E) Ô mc = 1 Ω(E) Ω(E) k Ô k Ω(E) k=1 Ô time average = Ô mc Ô mc(e) = Tr ˆρ mc (E)Ô ˆρ mc (E) = w j (E) j j j w j (E) = { 1 Ω(E), E = E j, otherwise E = E j E δe/ <E j <E+ δe/ Ω(E)

S = j=1 w j ln w j S mc (E) S mc (E) =lnω(e), Ω(E) =e Smc(E). canonical ensemble, T N,V (System) (Bath) (System+Bath) T 1 S T = E N,V T S,B System Bath T S = T B = T Bath T Ĥ E j j Ĥ j = E j j ˆρ c (T ) = 1 e βe j j j Z j = 1 Z e βĥ Z Z = j e βe j = Tr e βĥ e βf F (Helmholtz) ( β = 1 T ) T [K] k B [K] S(E) =k B lnω(e) S S k B T k B T S = ln ˆρ c c F = E TS E = Ĥ c df = 3

.3 grand canonical ensemble T µ V (System) (Bath) (System+Bath) T (Chemical Potential) μ μ S T = N E,V T S,B μ S,B System Bath T S = T B = T μ S = μ B T μ ˆN Ĥ [ Ĥ, ˆN ]= E j,n Ĥ E j,n = E j E j,n ˆN E j,n = N E j,n Ξ ˆρ gc (T ) = 1 e β(ej μn) E j,n E j,n Ξ j,n = 1 ˆN) e β(ĥ μ Ξ Ξ = j,n e β(e j μn) = Tr e β(ĥ μ ˆN) e βj J Ξ Z N N Ξ= Z N e βμn N S = ln ˆρ gc gc J = F μn = E TS μn E = Ĥ gc N = ˆN gc dj = 4

.4 T - p T -p ensemble T p N (System) (Bath) (System+Bath) T p p S T = V E,V T S,B p S,B System Bath T S = T B = T p S = p B T μ E j,v Ĥ E j,v = E j E j,v ˆV E j,v = V E j,v T - p ˆρ gc (T ) = 1 Y Y = j,v e β(e j+pv ) E j,v E j,v = 1 Y e β(ĥ+p ˆV ) j,v e β(e j+pv ) =Tre β(ĥ+p ˆV ) e βg G T - p T - p S = ln ˆρ Tp Tp G = F + pv = E TS + pv E = Ĥ Tp V = ˆV Tp dg =.5 E N V E, N, V, E V e, N V n, e, n : H H 1 V V O V 5

3 E,N,V E,N,V S S = S(E,N,V ) ds = S S S de + dn + dv E N,V N E,V V E,N 1 S T =, E N,V TdS = de μdn + pdv μ S T =, N E,V de = TdS + μdn pdv p S T = V E,N E = E(S, N, V ) S, N, V E E E T =, μ =, p = S N V S, N, V de = Legendre E F, (S T ) N,V S T F E TS S,V df = SdT + μdn pdv F F = F (T,N,V ) T,N,V F F F S =, μ =, p = T N V N,V T,V T,N,V df = ( ) F J, (N μ) N μ J F μn dj = SdT Ndμ pdv J J = J(T,μ,V ) T,μ,V J J J S =, N =, p = T μ V μ,v T,μ,V dj = ( ) J(T,μ,V ) V T μ J(T,μ,αV ) = αj(t,μ,v ) α α =1 V ( J V ) T,μ = J J = pv T,V S,N T,N T,μ 6

F G, (V p) V p G F + pv dg = SdT + μdn + Vdp G G = G(T,N,p) T,N,p G G G S =, μ =, V = T N p N,p T,N,p dg = ( T -p ) G(T,N,p) N T p G(T,αN,p) = αg(t,n,p) α α =1 N( G N ) T,p = G G = μn dg T,p SdT + Ndμ Vdp= Gibbs-Duhem E H, (V p) E = E(S, N, V ) V p H E + pv (enthaly) dh = TdS + μdn + Vdp H H = H(S, N, p) S, N, p H H H S =, μ =, V = S N p N,p S, N, p dh = S,p T,N S,N x, y, z x y z = = (x, z) (y,z) = (x,z) (x,y) (y,z) (x,y) x(y,z) y z(y,z) y = ( z,y ) x ( z x ) y x(y,z) z z(y,z) z da = Xdx + Ydy X y A x x u Y = (dda =Maxwell srelation) x y y = X + Y x u 7

II 4 4.1 N N Φ( r 1,, r N ) (Bose) (Fermi) Φ(, r i,, r j, ) = +Φ(, r j,, r i, ) (Boson) (1) Φ(, r i,, r j, ) = Φ(, r j,, r i, ) (Fermion) () Fermi-Dirac (Fermi ) Bose-Einstein (Bose ) Fermi Bose r i = r j (i j) Φ(, r i,, r j, )= 4. Ĥ = k ɛ kˆn k ɛ k ˆn k k ˆN ˆN = k ˆn k ˆn k n k n k =, 1 n k =, 1,, 3,, n k =, 3, 8

p = h k ɛ k = p m = h k m (V = L 3 L ) φ( r) = 1 e i k r = 1 e i p r/ h V V k φ(x, y, z) = φ(x + L, y, z) =φ(x, y + L, z) =φ(x, y, z + L) k = (kx,k y,k z ) k α = π L n α, n α =,, 1,, 1,, (α = x, y, z) (3D: V = L 3 )(ɛ k = p m k = D(ɛ) = Vg 1/ π n x n y n z k= π L (nx,ny,nz) m 3/ 3 ɛ1/ h g dɛd(ɛ) (L ) 4.3 Ξ = Tr e β(ĥ μ ˆN) =Tre β k (ɛ k μ)ˆn k = ( ) e β k (ɛ k μ)n k = ( k n k =,1 k = (1 + e β(ɛk μ) ) k n k =,1 e β(ɛ k μ)n k ) k n k n k = 1 Ξ Tr ˆn ke β(ĥ μ ˆN) = 1 Ξ Tr ˆn ke β k (ɛ k μ)ˆn k = 1 ln Ξ β ɛ k 1 = e β(ɛk μ) +1 f(ɛ k) f(ɛ) 9

S f = f(ɛ) S = k ( ) fln f +(1 f)ln (1 f) 4.4 Ξ = Tr e β(ĥ μ ˆN) =Tre β k (ɛ k μ)ˆn k = ( ) e β k (ɛ k μ)n k = k n k =,1,, k = 1 1 e k β(ɛ k μ) ( ) e β(ɛ k μ)n k n k =,1,, k μ<ɛ k μ< k n k n B (ɛ) n k = 1 ln Ξ β ɛ k 1 = e β(ɛk μ) 1 n B(ɛ k ) S n B = n B (ɛ) S = ) ((1 + n B )ln (1 + n B ) n B ln n B k 5 D(ɛ) =V 1/ m 3/ π h ɛ 1/ N μ(t,n) 3 N = k ˆn k = k f(ɛ k )= dɛd(ɛ)f(ɛ) E = k ɛ k ˆn k = k ɛ k f(ɛ k )= dɛɛ k D(ɛ)f(ɛ) 1

5.1 T = ɛ F ɛ F k F ɛ F = h k F m k F = (3π n e ) 1 3 n e = N/V : electron density T F : k B T F = ɛ F 5. T T <<T F f(ɛ) ɛ μ k B T 1 T<<T F (ɛ μ T << T F dɛg(ɛ)f(ɛ) = μ dɛg(ɛ)+ π 6 g (μ)(k B T ) + O((k B T ) 4 ) μ(t,n)=ɛ F π 6 d dɛ ln D(ɛ) (k B T ) ɛ=ɛf ( ) C V = E T = π 3 D(ɛ F )(k B T ) 11

6 N V ρ = N V ) ( D(ɛ) = V m3/ 1/ π h ɛ 1/ ) 3 N = k f(ɛ k )= ρv Q (T ) = ζ 3/ (e βμ ) V Q (T ) = ( π h mk B T ) 3 ζ 3/ (λ) = π 1/ dɛd(ɛ)n B (ɛ) ( ) x 1/ λ 1 e x 1 = λ k k 3/ V Q (T,m) T μ< ζ 3/ (λ) λ ζ 3/ (e βμ ) < ζ 3/ (1) ρv Q (T C )=ζ 3/ (1) T C k=1 μ = k BT N (when V, N ) k B T C = π h ρ 3 m ζ 3/ (1) (N N ) V Q(T ) V = ζ 3/ (1) N ɛ = T C [ 3 ] T N = N 1 T C N O(N) ( ) (*) 7 k H = hω(ˆn i + 1 ) mode, i 1

ˆn i i (photon) hω 1 (Black Body Radiation) 7.1 F S =, = N N T,V μ = Ĥ wall N Ĥ + Ĥwall Z = Tr e β(ĥ+ĥwall) E,V N = ˆN = 1 β(ĥ+ĥwall) Tr ˆNe Z Tr Ĥ E i(n) N Ĥwall Z = e βe i(n) N i N = 1 Z N e βe i(n) i N 7. Planck n i = ˆn i = n(ω i )= 1 e β hω i 1 Planck ω i = ck i c ω k N(ω) N(ω) = 4 ) π 3 /( 3 πk3 L 13

L D = d dω N D(ω) =V ω π c 3 (V = L 3 : ) 7.3 E = hω i ˆn i = i = 1 V π c 3 h 3 (k BT ) 4 1 D(ω) hω e β hω 1 dxx 3 1 e x 1 (k B T ) 4 Stefan-Boltzmann I(ω) =D(ω) hωn B (ω) I(ω) ω 3 e hω k B T hω >> k B T, Wien ω k B T hω << k B T, Rayleigh Jeans 8 8.1 (phonon) 3 a al n = a(n x,n y,z z ) n x,y,z =1,, 3,,L δ r n 1 T T = 1 (δ r n ) V V = V ({})+ δ r n V n δ r n δ rn= + 1 ( ) δ r n δ r m V δ r n δ r + m δ rn=δ r m= n m {δ r n = } = { } 3 3 C n {C nm } αβ V δrn δr α n β, α,β = x, y, z V () = V = 1 δ r n C nm δ t r m n m 14

V C nm = C( n m) C t ( n m) =C( m n) V (V ({δ r n + s}) =V ({δ r n }), s ) n C( n) = δ r n = 1 a( k)e i k n L 3 δ r (nx+l,ny,n z) = δ r (nx,ny,n z) k =(k x,k y,k z ) k α = π L l α, α = x, y, z l α =1,, 3,,L L 3 δ r n a( k) = a( k)( a( k) a( k) ) V = 1 C( k) = l k k a(k) C( k) a(k) e i k l C( l) C( k) C( k) = Uγ( k)u γ( k)=diag(γ 1,γ,γ 3 ) det ( C( k) γ j ( k)i) = ( ) V = 1 γ j ( k) b j ( k) k j=1,,3 b( k) = (b1 ( k),b ( k),b 3 ( k)) = a( k)u T = 1 k H = k ω j ( k) = γ j ( k) a(k) a(k) = 1 j=1,,3 k j=1,,3 ḃj( k) { 1 ḃj( k) + 1 ω j ( k) b j ( k) } k j k k H = ( hω j ( k) n j ( k)+ 1 ) k j=1,,3 15

hω 1 (*) C( k = ) = ω j ( ) = C( k)= C ( k) ω j ( k)=ω j ( k) (*) f( k, ω ) [ ω j ( f 1 1 k α k β ] f k)=k ω k k k α k β [...] α,β=x,y,z ω j ( k)=ck Debye 8. Debye ω j ( k)=ck 3/ 3L 3 =3V/a 3 Debye ω D { 3 D(ω) = Vω π c ω ω 3 D ω>ω D Debye ω D 3V = ω D = D(ω) = ( 6π c 3 a 3 dωd(ω) ) 1 3 9V ω a 3 ωd 3 ω>ω D E = dωd(ω) hωn B (ω) ωd = dω 9V ω 1 a 3 ωd 3 hω e β hω 1 = 9V (k B T ) 4 xd a 3 ( hω D ) 3 dx x3 e x 1 x D (T )= Θ D T = hω k B T Θ D Debye T<<Θ D x D (T ) T 3 C = E T ( T Θ D 16 ) 3

9 9.1 H N 1/ S 1,j=1,,N ( S j = S(S +1),S= 1/) M j = μs j M = N j=1 Mj N Ĥ = M H N = μ Ŝj H N = μh Ŝj z j=1 j=1 H z Z =Tre βh Tr S z 1,Sz,,Sz N Sz 1 Sz Sz N Ŝ z j Sz j = Sz j Sz j (Sz j = ±1 ) Ŝ z k Sz j = Sz j Ŝz k (k j) Z = S z 1 =± 1,,Sz N =± 1 e βμh N j=1 Sz j = S z 1 =± 1 N e βμhsz j SN z =± 1 j=1 = (e 1 βμh + e 1 βμh ) N =(cosh 1 βμh)n f (= F/N, Z = e βf ) f = 1 β ln cosh 1 βμh m = 1 N M z m = μ N N S z = μ 1 N Z Tr = 1 N Ising : j=1 N j=1 (βh) ln Z = 1 βμh μ tanh S z e βμh N j=1 Sz N 17

i, j JSi zsz j (Ising ) Ising 1 H = J N 1 j=1 S z j S z j+1 + H J> ( ) J < ( ) 18