ver.1 / c /(13)

Similar documents
ohp_06nov_tohoku.dvi

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

sakigake1.dvi

xia2.dvi

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

(a) (b) (c) 4. (a) (b) (c) p.2/27

main.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


Phase space Attractor mutual interaction selforganization jump hysteresis stabilize or destabilize Synchronization Self-excited Oscillation Nonlinear

(time series) ( 225 ) / / p.2/66

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

( ) ( )

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

meiji_resume_1.PDF

TOP URL 1

第1章 微分方程式と近似解法

Note.tex 2008/09/19( )

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

K E N Z OU

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

Swift-Hohenberg

201711grade1ouyou.pdf

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

ẋ = ax + y ẏ = x x by 2 Griffith a b Saddle Node Saddle-Node (phase plane) Griffith mrna(y) Protein(x) (nullcline) 0 (nullcline) (

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

構造と連続体の力学基礎

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (


ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

QMI_09.dvi

QMI_10.dvi

p12.dvi

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Nosé Hoover 1.2 ( 1) (a) (b) 1:

DVIOUT

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

ばらつき抑制のための確率最適制御

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W



Tel : , Fax : URL : tohru / / p.1/12

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

pdf

第5章 偏微分方程式の境界値問題

v_-3_+2_1.eps

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

2017

untitled

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

note1.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

A



S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

TOP URL 1

C 2. /

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(Jackson model) Ziman) (fluidity) (viscosity) (Free v

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

B ver B

keisoku01.dvi

三石貴志.indd

( ) ) AGD 2) 7) 1

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

kokyuroku.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


基礎数学I


B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

Fubini

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

本文/目次(裏白)

Transcription:

1 -- 11 1 c 2010 1/(13)

1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q, p) R n, n = 2m V(q) T(p) H(p, q) = T + V dq i dt = H p i, dp i dt = H q i, i = 1,..., m. H t dh/dt = 0 H (n 1) 2 3 c 2010 2/(13)

0 div f = n i=1 f i x i 0 0 1--1--3 2009 3 discrete-time dynamical system continuous-time dynamical system k x(k) 0 x(0) {x(k), k = 0, 1,...} x(k) x(k + 1) x(k + 1) = T(x(k)), x(k) X, k = 0, 1,... (1 1) T : X X ; x(k) x(k + 1) = T(x(k)) (1 2) X logistic x(k + 1) = α(1 x(k))x(k), x [0, 1] (1 3) Hénon x 1 (k + 1) = 1 + x 2 (k) ax 1 (k) 2 x 2 (k + 1) = bx 1 (k), x 1, x 2 R (1 4) (1 3) α R (1 4) a, b R X c 2010 3/(13)

dx dt = f (t, x), x X, t R (1 5) t x(t) 1--1--4 2009 3 autonomous system non-autonomous system (1 5) dx dt = g(x), x X, t R (1 6) g(x(t)) 0 1--1--5 2009 3 Poincaré R n 1 Π = {x R n q(x) = 0}, q : R n R ; x q(x) (1 7) x 0 ϕ(t, x 0 ) P : Π Π ; x ϕ(τ(x), x) (1 8) Poincaré map recurrence map τ Π Π Π Σ R n 1 T : Σ Σ P T c 2010 4/(13)

2 (1 5) t f (t + L, x) = f (t, x), L > 0 (1 9) x 0 R n ϕ(t, x 0 ) L T : R n R n ; x ϕ(l, x) (1 10) stroboscopic map 1--1--6 c 2010 5/(13)

1 -- 11 -- 1 1--2 1--2--1 van der Pol van der Pol ẍ + µ(x 2 1)ẋ + x = 0 2009 4 (1 11) 1 1 van der Pol 1) µ > 0 Hopf µ van 2, der Pol 3) M L C R 1 1 van der Pol 1--2--2 Dufng Duffing ẍ + δẋ + ω 2 0 x + βx3 = γ cos(ωt + φ) (1 12) Duffing β 1 2 1 3 β Duffing δ = γ = 0 Jacobi 4, 3) 5) 1--2--3 Mathieu Hill Hill ẍ + q(t)x = 0 (1 13) c 2010 6/(13)

ẍ + (a + 2b cos 2t)x = 0 (1 14) Mathieu 2 ÿ + 2α(t)ẏ + β(t)x = 0 (1 15) x = ye αdt, q = β + α 2 α (1 16) Hill 6) F β>0 β=0 x β<0 L R C 1 3 Duffing 1 2 (F = ω 2 0 x + βx3 ) 1) B. van der Pol, A Theory of the Amplitude of Free and Forced Triode Vibrations, Radio Review, vol.1, pp.701-710, 1920. 2) B. van der Pol and J. van der Mark, Frequency Demultiplication, Nature, vol.120, pp.363-364, 1927. 3) E.A. Jackson, Perspectives of Nonlinear Dynamics, Cambridge University Press, 1991.,, 1994. 4) C. Hayashi, Nonlinear Oscillations in Physical Systems, McGrawHill, New York, 1964. 5),, 2006. 6) W. Magnus and S. Winkler, Hill s Equation, Dover Publications, Inc., New York, 1979. c 2010 7/(13)

1 -- 11 -- 1 1--3 1--3--1 2009 3 dx/dt = f (x) f (x) = 0 equilibrium point x Lyapunov x Lyapunov ɛ δ δ ɛ Lyapunov ɛ ɛ x(t) lim x(t) = x t ξ(t) ξ (t) variation x(t) = x + ξ(t) ξ(t) dξ/dt = Aξ(t) A = D f ( x) = f x x(t)= x f / x f dξ/dt = Aξ(t) x dx/dt = f (x) A 0 hyperbolicsimple n n + 1 1) A 1--3--2 2009 3 1-3-1 f f / x (i, j) f i / x j (1 i, j n) n ds F F(ds) = Jds J J 0 1 critical curve basin of attraction 2) basin bifurcation 1--3--3 2009 3 ẋ = f(x) x x c 2010 8/(13)

x U V(x). U { x} V(x) > 0 V( x) = 0; U V(x) 0 U { x} V(x) < 0 3, V(x) Lyapunov function 4) x V(x) V(x) 4, 5) 1--3--4 2009 3 ẋ(t) = f(x(t), t) t x(t) = x(t + T) T > 0 T x(t) T 0 T = 0 T x(t) C = 0 t T x(t) ɛ δ C δ τ t τ C ɛ x(t) C V x τ x C x(t) x(t) x = x(t) f A(t) = D f( x(t)) ẋ(t) = A(t)x(t) x = 0 x(t) T T A(t) n ẋ(t) = A(t)x(t) n X(t) X(t + T) X(t + T) = X(t)S S S = e TR R t T P(t) X(t) = P(t)e tr y(t) = P(t) 1 x(t) y ẏ = Ry S λ R µ = (1/T) ln λ 1 Lyapunov c 2010 9/(13)

ẋ(t) = A(t)x(t) ẋ(t) = f(x(t), t) x(t) 1 x(t) ẋ(t) = f(x(t), t) 1 n 1 1 x(t) 1--3--5 2009 3 ẋ(t) = f(x(t), t) H. Bohr x(t) ɛ T(ɛ) = {τ R : x(t + τ) x(t) ɛ ( t R)} R L(ɛ) t R T(ɛ) [t, t + L(ɛ)] 6) ɛ L(ɛ) T ɛ L(ɛ) = T quasi-periodic solution 1),, http://cms.db.tokushima-u.ac.jp/dav/person/s10723/lecturenote/2007/nonlinearphenomena.pdf, 2005. 2) C. Mira, Chaotic Dynamics, World Scientific, Singapore, 1987. 3),, 2003. 4) H.K. Khalil, Nonlinear systems, Prentice Hall, 2001. 5) J.K. Hale and S.M.V. Lunel, Introduction to functional differential equations, Springer, 1993. 6) A.M. Fink, Almost Periodic Differential Equations, Springer-Verlag, 1974. c 2010 10/(13)

1 -- 11 -- 1 1--4 1--4--1 2009 2 1629-1695 1) 2) 1 1 3) 1) Q 1--4--2 2009 2 2) Q 4) 1 4 1 4 A B c 2010 11/(13)

1 4 1--4--3 2009 3 bifurcation local bifurcation global bifurcation 0 saddle-node bifurcation Hopf period-doubling bifurcation Neimark-Sacker pitchfork bifurcation transcritical bifurcation supercritical subcritical separatrix loop saddle connection homoclinic bifurcation heteroclinic bifurcation 2 doubly asymptotic point 1--4--4 2009 3 c 2010 12/(13)

structural stability 5) A 1--4--5 2009 3 region of initial conditions basin of attraction 6) : basin boundary 1) SYNC:,, 2005. 2),, 1987 3) R.C. Mackey, Injection locking of klystron oscillator, IRE Trans. Microwave Theory & Tech., vol.mtt-10, no.7, p.228, 1962. 4) J.M.T. Thompson and H.B. Stewart, Nonlinear dynamics and chaos, John Wiley and Sons, 1986. 5) C. Pugh and M.M. Peixoto, Structural Stability, Scholarpedia, vol.3, no.9, p.4008, 2008. 6) E. Ott, Basin of attraction, Scholarpedia, vol.1, no.8, p.1701, 2006. c 2010 13/(13)