Similar documents
Bessel ( 06/11/21) Bessel 1 ( ) 1.1 0, 1,..., n n J 0 (x), J 1 (x),..., J n (x) I 0 (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bess

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

: ( ) : ( ) :! ( ) / 32

Microsoft Word - 信号処理3.doc

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (


2000年度『数学展望 I』講義録

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

A

untitled

Part () () Γ Part ,

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

Acrobat Distiller, Job 128

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

Untitled

°ÌÁê¿ô³ØII

notekiso1_09.dvi

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

Gmech08.dvi

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

numb.dvi

2011de.dvi

chap1.dvi

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

untitled

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

29

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

TOP URL 1


高等学校学習指導要領解説 数学編

newmain.dvi

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

構造と連続体の力学基礎

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

phs.dvi

Gmech08.dvi

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

第1章 微分方程式と近似解法

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

_TZ_4797-haus-local


LLG-R8.Nisus.pdf

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (


t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

i 18 2H 2 + O 2 2H 2 + ( ) 3K

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

Z: Q: R: C: sin 6 5 ζ a, b

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

I 1

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


Chap9.dvi

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

DVIOUT

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.


1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

数学Ⅱ演習(足助・09夏)


Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,


No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

Transcription:

29 21 3 1

1 2 1.1............................ 2 1.2................................... 2 2 3 2.1 Neumann...................... 3 2.2............................. 5 2.3................................. 5 3 2 11 3.1 Neumann...................... 11 3.2......................... 15 4 2 4.1............................... 2 4.2................................. 2 5 21 6 23 1

1 1.1 (1756 1827) ( U = λu, U =, U ) n 1 2 1.2 Mathematica λ YouTube (http://www.youtube.com/watch?v=s9gbf8yly) Neumann 2

2 2.1 Neumann Ω = (, 1) (, 1) 1 2 u c 2 t 2 u (x, y, t) = n = 2 u x + 2 u 2 y 2 u(x, y, ) = f(x, y), ((x, y) Ω, < t), ((x, y) Ω, < t), u (x, y, ) = g(x, y) t ((x, y) Ω). n Ω (x, y) Ω Fourier u(x, y, t) = 1 4 (a + b t) + cos mπx cos nπy + 1 2 + 1 2 m=1 n=1 [a mn cos(c m 2 + n 2 πt) + n=1 m=1 b mn c m 2 + n 2 π sin(c m 2 + n 2 πt) cos nπy[a n cos(cnπt) + b n cnπ sin(cnπt)] cos mπx[a m cos(cmπt) + b m cmπ sin(cmπt)], a mn = 4 b mn = 4 1 1 1 1 f(x, y) cos mπx cos nπydxdy, g(x, y) cos mπx cos nπydxdy. 3

2 U x + 2 U = λu ((x, y) Ω), 2 y2 U n = ((x, y) Ω) U U(x, y) = X(x)Y (y) X (x)y (y) + X(x)Y (y) = λx(x)y (y). X (x) X(x) = λ Y (y) Y (y). µ X (x) = µx(x), Y (y) = (λ µ)y (y). X () = X (1) = Y () = Y (1) =. µ = m 2 π 2, X(x) = A cos mπx (m =, 1, 2,, A ) λ µ = n 2 π 2, Y (y) = B cos nπy (n =, 1, 2,, B ) λ = (m 2 + n 2 )π 2, U(x, y) = C cos mπx cos nπy (C ) 4

2.2 λ = 2π 2 (m, n) = (1, 1) U(x, y) = C cos πx cos πy (C ) λ λ = 5π 2 (m, n) = (2, 1), (1, 2) U(x, y) = C 1 cos 2πx cos πy + C 2 cos πx cos 2πy (C 1, C 2 ) λ λ = 5π 2 (m, n) = (1, 7), (5, 5), (7, 1) U(x, y) = C 3 cos πx cos 7πy+C 4 cos 5πx cos 5πy+C 5 cos 7πx cos πy (C 3, C 4, C 5 ) λ cos mπx cos mπy cos mπx cos mπy = x = 2k 1 2m, y = 2l 1 (k, l = 1, 2, m) 2m a cos mπx cos nπy + b cos nπx cos mπy ( ) 2.3 ( ) a, b, m, n Mathematica 5

m = 6, n = 4, a = 1, b = 1 mm 2.1: cos 6πx cos 4πy + cos 4πx cos 6πy m = 3, n = 5, a = b = 1 mm 2.2: cos 3πx cos 5πy + cos 5πx cos 3πy 6

m = 14, n = 24, a = b = 1 mm 2.3: cos 14πx cos 24πy + cos 24πx cos 14πy m = 7, n = 11, a = b = 1 mm 2.4: cos 7πx cos 11πy + cos 11πx cos 7πy 7

m = 8, n = 4, a = b = 1 mm 2.5: cos 8πx cos 4πy + cos 4πx cos 8πy m = 8, n = 4, a = 2, b = 3 mm 2.6: 2 cos 8πx cos 4πy + 3 cos 4πx cos 8πy 8

Mathematica m = 6, n = 4, a = 1, b = 1 mm 2.7: cos 6πx cos 4π + cos 4πx cos 6πy 9

m = 8, n = 6, a = 4, b = 1 mm 2.8: 4 cos 8πx cos 6π + cos 6πx cos 8πy 2.7 2.8 2.5 2.6 m, n a, b a, b 1 a, b 1 2.8 a = b = 1 m, n 3 1

3 2 3.1 Neumann Ω = (x, y) R 2 ; x 2 + y 2 < 1 Neumann 2 u t 2 = c2 u ((x, y) Ω, < t), u n = ((x, y) Ω, < t), u(x, y, ) = f(x, y), U = 2 U r 2 u (x, y, ) = g(x, y) t + 1 r U r + 2 U θ 2. ((x, y) Ω). ( 2 u 2 t = u 2 c2 r + 1 u 2 r r + 1 ) 2 u ( < r < 1, θ 2π, < t < ). r 2 θ 2 u (1, θ, t) = ( θ 2π, < t). r u u = f(r, θ), = g(r, θ) ( < r < 1, θ 2π, t = ). t u(r, θ, t) = U(r, θ)t (t) λ s.t. U = λu,, T (t) = c 2 λt (t) 11

( 2 u (3.1) r + 1 2 r U n =. U (1, θ) = ( θ 2π) r u r + 1 ) 2 u = λu. ((x, y) Ω) r 2 θ 2 ((x, y) Ω) λ = U λ U(r, θ) = R(r)Θ(θ) R Θ + 1 r R Θ + 1 r 2 RΘ + λrθ =. RΘ r 2 R R + 1 R r R + 1 Θ 2 r 2 Θ =. r 2 R R + r R R + λr2 = Θ2 Θ. θ r µ r 2 R R + r R R + λr2 = µ, Θ2 Θ = µ. Θ 2π Θ = µθ Θ() = Θ(2π), Θ () = Θ (2π). Θ = A cos µθ + B sin µθ, (A, B ) µ = n (n =, 1, 2, ). 12

R µ = n 2. r 2 R R + r R R + λr2 = n 2. r 2 R + rr + (λr 2 n 2 )R =. Bessel r 2 R + rr + (λr 2 n 2 )R = Bessel R(r) = AJ n ( λr) + BY n ( λr) J n (x) Bessel Y n (x) Bessel ( 1) m ( x ) 2m+n J n (x) =, m!γ(m + n + 1) 2 m= Y n (x) = J n(x) cos(nπ) J n (x) sin(nπ) 1.8.6.4.2 -.2 -.4 2 4 6 8 1 3.1: Bessel.5.25 -.25 5 1 15 2 25 -.5 -.75-1 3.2: Bessel Y n (λr) r = R(r) r = B = R(r) = AJ n ( λr). 13

R (1) = R (1) = J n( λ) =. R (r) Ω λ J n(r) = λ l nm l nm Bessel J n(r) : J n(l nm ) =, < l n1 < l n2 < l n3 <. l 2 nm m N s.t. λ = l 2 nm. λ = lnm. U nm (r, θ) = J n (l nm r)[a sin(nθ) + b cos(nθ)] (3.1) = J n (l nm r)c cos(nθ + D) (A,B,C,D ) λ =, lnm 2 λ = U(r, θ) λ = lnm 2 U(r, θ) = CJ n (l nm r) cos(nθ + D) J n (l nm ) = l nm r = µ nk r = µ nk l nm (k = 1, 2, ) cos(nθ + D) = nθ = π 2, 3π 2, θ = π 2n, 3π 2n, U nm m=3,n=4 2 4 ( [2]) 14

3.2 Mathematica 1.5 -.5-1 -1 -.5.5 1.4.2 -.2 -.4-1 -.5 -.5.5 1.5 1-1 3.3: (n=1,m=3,a=1,b=1) 15

1.5 -.5-1 -1 -.5.5 1.4.2 -.2 -.4-1 -.5.5 1 -.5.5 16 1-1 3.4: (n=7,m=4,a=1,b=1)

1.5 -.5-1 -1 -.5.5 1.4.2 -.2 -.4-1 -.5 -.5.5 1.5 17 1-1 3.5: (n=1,m=7,a=1,b=1)

1.5 -.5-1 -1 -.5.5 1.4.2 -.2 -.4-1 -.5 -.5.5 1.5 18 1-1 3.6: (n=12,m=4,a=1,b=1)

3.7: Chladni[3] 3.1 U(r, θ) = CJ n (l nm r) cos(nθ + D) 3.3 3.6 Cladni Cladni 1,2 (m,n=1,1),(m,n=1,2) 4,6,8,11,12 3.3 3.6 19 4,6,8,11,12 3,5,9

4 4.1 a,b 1 m n 3 4.2 3.2 2

5 a cos(mπx) cos(nπy) + b cos(nπx) cos(mπy) (Neumann ) Needs["Graphics ImplicitPlot "] eigenn[m_, n_, a_, b_] := {ImplicitPlot[a*Cos[m Pi x]cos[n Pi y]+b*cos[n Pi x]cos[m Pi y] ==,{x,,1}, {y,,1}, PlotPoints -> 1, AspectRatio -> 1], Plot3D[a*Cos[m Pi x]cos[n Pi y] + b*cos[n Pi x]cos[m Pi y], {x,, 1}, {y,, 1}]} U(r, θ) = CJ n (l nm r) cos(nθ + D) (Neumann ) << NumericalMath BesselZeros For[n =, n < 2, n++, bpz[n] = BesselJPrimeZeros[n, 1, WorkingPrecision ->2]] Needs["Graphics ImplicitPlot "] eigennc1[n_, m_, a_, b_] := ImplicitPlot[BesselJ[n, bpz[n][[m]]*sqrt[x^2 + y^2]]* (a*sin[n*arg[x + I*y]]+b*Cos[n*Arg[x + I*y]]) ==, {x, -1, 1}, {y, -1, 1}, PlotPoints -> 1] eigennc2[n_, m_, a_, b_] := Plot3D[BesselJ[n, bpz[n][[m]]*sqrt[x^2 + y^2]]* (a*sin[n*arg[x + I*y]] + b*cos[n*arg[x + I*y]]), {x, -1, 1}, {y, -1, 1}, PlotPoints -> 1] 21

BesselJPrimeZeros[n,m] J n(x) m 22

6 23

[1] : (1983 9 1 ) [2] (1998 ) [3] Entdeckungen uber die Theorie des Klanges : Chladni,Ernst Florens Friedrich 24