9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33

Similar documents
本文/目次(裏白)

第86回日本感染症学会総会学術集会後抄録(I)

プログラム

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

TOP URL 1

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

基礎数学I

nsg02-13/ky045059301600033210

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

GJG160842_O.QXD

arxiv: v1(astro-ph.co)

gr09.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

TOP URL 1

量子力学 問題

Note.tex 2008/09/19( )

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

支持力計算法.PDF

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

H.Haken Synergetics 2nd (1978)

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

201711grade1ouyou.pdf

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

2011de.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

meiji_resume_1.PDF

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

TOP URL 1

koji07-01.dvi

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

LLG-R8.Nisus.pdf

構造と連続体の力学基礎


V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I , : ~/math/functional-analysis/functional-analysis-1.tex

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+


24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

newmain.dvi

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

tnbp59-21_Web:P2/ky132379509610002944

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

chap9.dvi

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

抄録/抄録1    (1)V


A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

nsg04-28/ky208684356100043077

I

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

Part () () Γ Part ,

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v


Z: Q: R: C: sin 6 5 ζ a, b


9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

Dynkin Serre Weyl

研修コーナー

パーキンソン病治療ガイドライン2002

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

( )


数学の基礎訓練I

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

成長機構

Microsoft Word - 11問題表紙(選択).docx

: , 2.0, 3.0, 2.0, (%) ( 2.

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

3/4/8:9 { } { } β β β α β α β β


[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo


Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

Transcription:

9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb 2008 1 / 33

1 NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33

1 Green-Griffiths (1972) NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33

1 Green-Griffiths (1972) X f : C X f (C) X NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33

1 Green-Griffiths (1972) X f : C X f (C) X (1970) NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33

1 Green-Griffiths (1972) X f : C X f (C) X (1970) P n (C) 2n 1 (n 3) NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33

1 Green-Griffiths (1972) X f : C X f (C) X (1970) P n (C) 2n 1 (n 3) ( GCA95 ) NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33

1 Green-Griffiths (1972) X f : C X f (C) X (1970) P n (C) 2n 1 (n 3) ( GCA95 ) X NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33

1 Green-Griffiths (1972) X f : C X f (C) X (1970) P n (C) 2n 1 (n 3) ( GCA95 ) X D = i D i X NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33

1 Green-Griffiths (1972) X f : C X f (C) X (1970) P n (C) 2n 1 (n 3) ( GCA95 ) X D = i D i X f : C X NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33

1 Green-Griffiths (1972) X f : C X f (C) X (1970) P n (C) 2n 1 (n 3) ( GCA95 ) X D = i D i X f : C X T f (r; [D]) + T f (r; K X ) i N 1 (r; f D i ) + ϵt f (r) ϵ, ϵ > 0. NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33

Griffihts NOGUCHI (UT) HDVT 9 Feb 2008 3 / 33

Griffihts 1.1 (Griffiths et al., 1972 ) NOGUCHI (UT) HDVT 9 Feb 2008 3 / 33

Griffihts 1.1 (Griffiths et al., 1972 ) X n D = i D i X NOGUCHI (UT) HDVT 9 Feb 2008 3 / 33

Griffihts 1.1 (Griffiths et al., 1972 ) X n D = i D i X f : C n X T f (r; [D]) + T f (r; K X ) i N 1 (r; f D i ) + S f (r) ϵ, ϵ > 0. NOGUCHI (UT) HDVT 9 Feb 2008 3 / 33

Griffihts 1.1 (Griffiths et al., 1972 ) X n D = i D i X f : C n X T f (r; [D]) + T f (r; K X ) i N 1 (r; f D i ) + S f (r) ϵ, ϵ > 0. S f (r) = O(δ log r + log + T f (r)) δ, δ > 0. NOGUCHI (UT) HDVT 9 Feb 2008 3 / 33

Griffihts 1.1 (Griffiths et al., 1972 ) X n D = i D i X f : C n X T f (r; [D]) + T f (r; K X ) i N 1 (r; f D i ) + S f (r) ϵ, ϵ > 0. S f (r) = O(δ log r + log + T f (r)) δ, δ > 0. Green-Griffiths NOGUCHI (UT) HDVT 9 Feb 2008 3 / 33

NOGUCHI (UT) HDVT 9 Feb 2008 4 / 33

1.2 (Ein 88 91, Xu 94, Voisin 96) X P n (C) 2n 1(n 3) X NOGUCHI (UT) HDVT 9 Feb 2008 4 / 33

1.2 (Ein 88 91, Xu 94, Voisin 96) X P n (C) 2n 1(n 3) X 2 NOGUCHI (UT) HDVT 9 Feb 2008 4 / 33

1.2 (Ein 88 91, Xu 94, Voisin 96) X P n (C) 2n 1(n 3) X 2 E = µ=1 ν µz µ C z µ C. { ν µ, z = z µ, ord z E = 0, z {z µ }. E l( ) NOGUCHI (UT) HDVT 9 Feb 2008 4 / 33

n l (t; E) = min{ν µ, l}, N l (r; E) = { z µ <t} r 1 n l (t; E) dt. t l = n(t; E) = n (t; E), N(r; E) = N (r; E). NOGUCHI (UT) HDVT 9 Feb 2008 5 / 33

n l (t; E) = min{ν µ, l}, N l (r; E) = { z µ <t} r 1 n l (t; E) dt. t l = n(t; E) = n (t; E), N(r; E) = N (r; E). X O X I O X f : C X, f (C) Supp O X /I NOGUCHI (UT) HDVT 9 Feb 2008 5 / 33

X {U j } (i) U j σ jk Γ(U j, I), k = 1, 2,..., U j I (ii) {U j } {c j } NOGUCHI (UT) HDVT 9 Feb 2008 6 / 33

X {U j } (i) U j σ jk Γ(U j, I), k = 1, 2,..., U j I (ii) {U j } {c j } ρ I (x) = ( j c j(x) k σ jk(x) 2 ) 1/2 C Cρ I (x) 1, x M. X log ρ I ( Weil {U j }, {c j } NOGUCHI (UT) HDVT 9 Feb 2008 6 / 33

X {U j } (i) U j σ jk Γ(U j, I), k = 1, 2,..., U j I (ii) {U j } {c j } ρ I (x) = ( j c j(x) k σ jk(x) 2 ) 1/2 C Cρ I (x) 1, x M. X log ρ I ( Weil {U j }, {c j } f I Y = (Supp O X /I, O/I) m f (r; I) = m f (r; Y ) 1 dθ = log Cρ I (f (z)) 2π z =r ( 0) NOGUCHI (UT) HDVT 9 Feb 2008 6 / 33

ρ I f (z) C \ f 1 (Supp Y ) NOGUCHI (UT) HDVT 9 Feb 2008 7 / 33

ρ I f (z) C \ f 1 (Supp Y ) z 0 f 1 (Supp Y ) U f I = ((z z 0 ) ν ), ν N U ψ(z) log ρ I f (z) = ν log z z 0 + ψ(z), z U. NOGUCHI (UT) HDVT 9 Feb 2008 7 / 33

ρ I f (z) C \ f 1 (Supp Y ) z 0 f 1 (Supp Y ) U f I = ((z z 0 ) ν ), ν N U ψ(z) log ρ I f (z) = ν log z z 0 + ψ(z), z U. N(r; f I) N l (r; f I) ν NOGUCHI (UT) HDVT 9 Feb 2008 7 / 33

ρ I f (z) C \ f 1 (Supp Y ) z 0 f 1 (Supp Y ) U f I = ((z z 0 ) ν ), ν N U ψ(z) log ρ I f (z) = ν log z z 0 + ψ(z), z U. N(r; f I) N l (r; f I) ν ω I,f = ω Y,f = dd c ψ(z) = i 2π ψ(z) = dd c 1 log (z U), ρ I f (z) C (1,1) NOGUCHI (UT) HDVT 9 Feb 2008 7 / 33

ρ I f (z) C \ f 1 (Supp Y ) z 0 f 1 (Supp Y ) U f I = ((z z 0 ) ν ), ν N U ψ(z) log ρ I f (z) = ν log z z 0 + ψ(z), z U. N(r; f I) N l (r; f I) ν ω I,f = ω Y,f = dd c ψ(z) = i 2π ψ(z) = dd c 1 log (z U), ρ I f (z) C (1,1) f I Y r dt T (r; ω I,f ) = T (r; ω Y,f ) = t 1 ω I,f z <t NOGUCHI (UT) HDVT 9 Feb 2008 7 / 33

I X Cartier D m f (r; I) = m f (r; D) + O(1), T (r; ω I,f ) = T f (r; [D]) + O(1). NOGUCHI (UT) HDVT 9 Feb 2008 8 / 33

I X Cartier D m f (r; I) = m f (r; D) + O(1), T (r; ω I,f ) = T f (r; [D]) + O(1). X ω X r dt (1) T f (r) = T (r; ω X ) = f ω X. t 1 z <t NOGUCHI (UT) HDVT 9 Feb 2008 8 / 33

2 f : C X I NOGUCHI (UT) HDVT 9 Feb 2008 9 / 33

2 f : C X I (i) ( ) T (r; ω I,f ) = N(r; f I) + m f (r; I) m f (1; I) NOGUCHI (UT) HDVT 9 Feb 2008 9 / 33

2 f : C X I (i) ( ) T (r; ω I,f ) = N(r; f I) + m f (r; I) m f (1; I) (ii) X T (r; ω I,f ) = O(T f (r)) NOGUCHI (UT) HDVT 9 Feb 2008 9 / 33

2 f : C X I (i) ( ) T (r; ω I,f ) = N(r; f I) + m f (r; I) m f (1; I) (ii) X T (r; ω I,f ) = O(T f (r)) (iii) ϕ : X 1 X 2 Y i X i (i = 1, 2) ϕ(y 1 ) Y 2 m f (r; Y 1 ) m ϕ f (r; Y 2 ) + O(1) NOGUCHI (UT) HDVT 9 Feb 2008 9 / 33

3 Cartan f : C P n (C) f = (f 0 : : f n ) T f (r) = T (r; f (F.-S.)) Fubini-Study NOGUCHI (UT) HDVT 9 Feb 2008 10 / 33

3 Cartan f : C P n (C) f = (f 0 : : f n ) T f (r) = T (r; f (F.-S.)) Fubini-Study 3 (Cartan 1933) f NOGUCHI (UT) HDVT 9 Feb 2008 10 / 33

3 Cartan f : C P n (C) f = (f 0 : : f n ) T f (r) = T (r; f (F.-S.)) Fubini-Study 3 (Cartan 1933) f H j, 1 j q (q n 1)T f (r) q N n (r; f H i ) + S f (r) j=1 NOGUCHI (UT) HDVT 9 Feb 2008 10 / 33

3 Cartan f : C P n (C) f = (f 0 : : f n ) T f (r) = T (r; f (F.-S.)) Fubini-Study 3 (Cartan 1933) f H j, 1 j q (q n 1)T f (r) q N n (r; f H i ) + S f (r) j=1 S f (r) = O(δ log + r + log + T f (r)) δ, δ > 0. NOGUCHI (UT) HDVT 9 Feb 2008 10 / 33

Cartan n + 1 W (f 0,, f n ) NOGUCHI (UT) HDVT 9 Feb 2008 11 / 33

Cartan n + 1 W (f 0,, f n ) Riesz j Q log Ĥj f W ( f ) j R = log Ĥj f + log Ĥj f W ( f ) j Q\R Q = {1,..., q}, R Q, R = n + 1. NOGUCHI (UT) HDVT 9 Feb 2008 11 / 33

Cartan n + 1 W (f 0,, f n ) Riesz j Q log Ĥj f W ( f ) j R = log Ĥj f + log Ĥj f W ( f ) j Q\R Q = {1,..., q}, R Q, R = n + 1. 4 (Cartan Nochka 1982) f (C) P n (C) l NOGUCHI (UT) HDVT 9 Feb 2008 11 / 33

Cartan n + 1 W (f 0,, f n ) Riesz j Q log Ĥj f W ( f ) j R = log Ĥj f + log Ĥj f W ( f ) j Q\R Q = {1,..., q}, R Q, R = n + 1. 4 (Cartan Nochka 1982) f (C) P n (C) l H j, 1 j q (q 2n + l 1)T f (r) q N n (r; f H i ) + S f (r). j=1 NOGUCHI (UT) HDVT 9 Feb 2008 11 / 33

4 P n (C) NOGUCHI (UT) HDVT 9 Feb 2008 12 / 33

4 P n (C) Eremenko-Sodin(1992) P n (C) D j, 1 j q, NOGUCHI (UT) HDVT 9 Feb 2008 12 / 33

4 P n (C) Eremenko-Sodin(1992) P n (C) D j, 1 j q, D j, 1 j q R {1,..., q} R n codim j R D j = R R > n j R D j = 5 (Eremenko-Sodin 1992) D j 1 j q P n (C) f : C P n (C) (q 2n)T f (r) q j=1 1 deg D j N(r; f D j ) + ϵt f (r) ϵ, ϵ > 0. NOGUCHI (UT) HDVT 9 Feb 2008 12 / 33

Cartan Weyls-Ahlfors NOGUCHI (UT) HDVT 9 Feb 2008 13 / 33

Cartan Weyls-Ahlfors N(r; f D j ) NOGUCHI (UT) HDVT 9 Feb 2008 13 / 33

Cartan Weyls-Ahlfors N(r; f D j ) Corvaja Zannier Schmidt Min Ru B. Shiffman 1979 NOGUCHI (UT) HDVT 9 Feb 2008 13 / 33

Cartan Weyls-Ahlfors N(r; f D j ) Corvaja Zannier Schmidt Min Ru B. Shiffman 1979 6 (M. Ru, 2004) D j P n (C), 1 j q, f : C P n (C) (q n 1)T f (r) q j=1 1 deg D j N(r; f D j ) + ϵt f (r) ϵ. NOGUCHI (UT) HDVT 9 Feb 2008 13 / 33

Cartan Weyls-Ahlfors N(r; f D j ) Corvaja Zannier Schmidt Min Ru B. Shiffman 1979 6 (M. Ru, 2004) D j P n (C), 1 j q, f : C P n (C) (q n 1)T f (r) q j=1 1 deg D j N(r; f D j ) + ϵt f (r) ϵ. N(r; f D j ) NOGUCHI (UT) HDVT 9 Feb 2008 13 / 33

5 Siu X n L > 0 D j L, 1 j q, s j H 0 (X, L) NOGUCHI (UT) HDVT 9 Feb 2008 14 / 33

5 Siu X n L > 0 D j L, 1 j q, s j H 0 (X, L) Γ γ αβ Γ γ αβ T(X ) F t H 0 (X, F ) tγ γ αβ NOGUCHI (UT) HDVT 9 Feb 2008 14 / 33

5 Siu X n L > 0 D j L, 1 j q, s j H 0 (X, L) Γ γ αβ Γ γ αβ T(X ) F t H 0 (X, F ) tγ γ αβ f : C X 1 (i) α, β td α β s j α s j, β s j and s j C α (1, 0) D α Γ γ αβ (1, 0) 2 (ii) f z td z f z (td z ) (n 1) f z K 1 X F n(n 1)/2, 0. NOGUCHI (UT) HDVT 9 Feb 2008 14 / 33

7 (Y. Siu, 1987) n(n 1) qt f (r; L) + T f (r; K X ) T f (r; F ) 2 q N(r; f D j ) + ϵt f (r) ϵ. j=1 NOGUCHI (UT) HDVT 9 Feb 2008 15 / 33

7 (Y. Siu, 1987) n(n 1) qt f (r; L) + T f (r; K X ) T f (r; F ) 2 q N(r; f D j ) + ϵt f (r) ϵ. j=1 P n (C) H j Cartan ( q n 1 ) n(n 1) T f (r; L) 2 q N(r; f H j ) + ϵt f (r) ϵ j=1 NOGUCHI (UT) HDVT 9 Feb 2008 15 / 33

6 Deligne X n D X σ 1 σ l = 0 σ i NOGUCHI (UT) HDVT 9 Feb 2008 16 / 33

6 Deligne X n D X σ 1 σ l = 0 σ i ( d j ) ν σ i, 1 j k, σ i k Ω 1 X (log D) D Deligne 1 NOGUCHI (UT) HDVT 9 Feb 2008 16 / 33

6 Deligne X n D X σ 1 σ l = 0 σ i ( d j ) ν σ i, 1 j k, σ i k Ω 1 X (log D) D Deligne 1 α : X \ D A X Albanese Zariski Y NOGUCHI (UT) HDVT 9 Feb 2008 16 / 33

8 ( 1977/81) (i) dim Y = n (ii) Y NOGUCHI (UT) HDVT 9 Feb 2008 17 / 33

8 ( 1977/81) (i) dim Y = n (ii) Y κ > 0 f : C X κt f (r) N 1 (r, f D) + S f (r). NOGUCHI (UT) HDVT 9 Feb 2008 17 / 33

8 ( 1977/81) (i) dim Y = n (ii) Y κ > 0 f : C X κt f (r) N 1 (r, f D) + S f (r). X \ D q(x \ D) = h 0 (X, Ω 1 X (log D)); D = q(x ) = q(x ) NOGUCHI (UT) HDVT 9 Feb 2008 17 / 33

8 ( 1977/81) (i) dim Y = n (ii) Y κ > 0 f : C X κt f (r) N 1 (r, f D) + S f (r). X \ D q(x \ D) = h 0 (X, Ω 1 X (log D)); D = q(x ) = q(x ) 9 Bloch- q(x \ D) > n f : C X \ D NOGUCHI (UT) HDVT 9 Feb 2008 17 / 33

10 Bloch- 1926/77;... q(x ) > n f : C X NOGUCHI (UT) HDVT 9 Feb 2008 18 / 33

10 Bloch- 1926/77;... q(x ) > n f : C X A. Bloch (1926) Nevanlinna (1977) NOGUCHI (UT) HDVT 9 Feb 2008 18 / 33

10 Bloch- 1926/77;... q(x ) > n f : C X A. Bloch (1926) Nevanlinna (1977) 11 Borel 1897 H j P n (C), 1 j n + 2, f : C P n (C) \ n+2 j=1 H j NOGUCHI (UT) HDVT 9 Feb 2008 18 / 33

10 Bloch- 1926/77;... q(x ) > n f : C X A. Bloch (1926) Nevanlinna (1977) 11 Borel 1897 H j P n (C), 1 j n + 2, f : C P n (C) \ n+2 j=1 H j ( q P n (C) \ ) n+2 j=1 H j = n + 1 > n Bloch- Borel Bloch- NOGUCHI (UT) HDVT 9 Feb 2008 18 / 33

7 Bloch- M f : (C, 0) (M, x) (f (0)) = x) f (1) (0) T (M) x x M NOGUCHI (UT) HDVT 9 Feb 2008 19 / 33

7 Bloch- M f : (C, 0) (M, x) (f (0)) = x) f (1) (0) T (M) x x M k f (ζ) f (0) + 1 1! f (1) (0)ζ + + 1 k! f (k) (0)ζ k, NOGUCHI (UT) HDVT 9 Feb 2008 19 / 33

7 Bloch- M f : (C, 0) (M, x) (f (0)) = x) f (1) (0) T (M) x x M k f (ζ) f (0) + 1 1! f (1) (0)ζ + + 1 k! f (k) (0)ζ k, (f (1) (0),..., f (k) (0)) J k (M) x x J k (M) M k NOGUCHI (UT) HDVT 9 Feb 2008 19 / 33

f : C M J k (f ) : C J k (M) NOGUCHI (UT) HDVT 9 Feb 2008 20 / 33

f : C M J k (f ) : C J k (M) J k (M) Ψ : J k (M) C { } k NOGUCHI (UT) HDVT 9 Feb 2008 20 / 33

f : C M J k (f ) : C J k (M) J k (M) Ψ : J k (M) C { } k D M σ 1 σ l = 0 σ i NOGUCHI (UT) HDVT 9 Feb 2008 20 / 33

f : C M J k (f ) : C J k (M) J k (M) Ψ : J k (M) C { } k D M σ 1 σ l = 0 σ i ( d j ) ν σ i, 1 j k, σ i k NOGUCHI (UT) HDVT 9 Feb 2008 20 / 33

12 M Ψ : J k (M) C { } k m Ψ Jk (f )(r; ) = S f (r). NOGUCHI (UT) HDVT 9 Feb 2008 21 / 33

12 M Ψ : J k (M) C { } k m Ψ Jk (f )(r; ) = S f (r). 8 NOGUCHI (UT) HDVT 9 Feb 2008 21 / 33

12 M Ψ : J k (M) C { } k m Ψ Jk (f )(r; ) = S f (r). 8 A NOGUCHI (UT) HDVT 9 Feb 2008 21 / 33

12 M Ψ : J k (M) C { } k m Ψ Jk (f )(r; ) = S f (r). 8 A 0 (C ) t A A 0 0, A 0 NOGUCHI (UT) HDVT 9 Feb 2008 21 / 33

12 M Ψ : J k (M) C { } k m Ψ Jk (f )(r; ) = S f (r). 8 A 0 (C ) t A A 0 0, A 0 J k (A) A k f : C A J k (f ) : C J k (A) k X k (f ) J k (f )(C) J k (A) Zariski NOGUCHI (UT) HDVT 9 Feb 2008 21 / 33

13 ( -Winkelmann- 2007 to appear in Forum Math.) f : C A NOGUCHI (UT) HDVT 9 Feb 2008 22 / 33

13 ( -Winkelmann- 2007 to appear in Forum Math.) f : C A (i) Z X k (f ) (k 0) X k (f ) T (r; ω Z,Jk (f ) ) N 1(r; J k (f ) Z) + ϵt f (r) ϵ, ϵ > 0, Z X k (f ) Z NOGUCHI (UT) HDVT 9 Feb 2008 22 / 33

13 ( -Winkelmann- 2007 to appear in Forum Math.) f : C A (i) Z X k (f ) (k 0) X k (f ) T (r; ω Z,Jk (f ) ) N 1(r; J k (f ) Z) + ϵt f (r) ϵ, ϵ > 0, Z X k (f ) Z (ii) codim Xk (f )Z 2 T (r; ω Z,J k (f ) ) ϵt f (r) ϵ, ϵ > 0. NOGUCHI (UT) HDVT 9 Feb 2008 22 / 33

13 ( -Winkelmann- 2007 to appear in Forum Math.) f : C A (i) Z X k (f ) (k 0) X k (f ) T (r; ω Z,Jk (f ) ) N 1(r; J k (f ) Z) + ϵt f (r) ϵ, ϵ > 0, Z X k (f ) Z (ii) codim Xk (f )Z 2 T (r; ω Z,J k (f ) ) ϵt f (r) ϵ, ϵ > 0. (iii) k = 0 Z A D A Ā A f T f (r; L( D)) N 1 (r; f D) + ϵt f (r; L( D)) ϵ, ϵ > 0. NOGUCHI (UT) HDVT 9 Feb 2008 22 / 33

(iii) Lang NOGUCHI (UT) HDVT 9 Feb 2008 23 / 33

(iii) Lang 14 (Y.T. Siu-Z.K. Yeung 1996 1998 M. McQuillan 2001) A D f : C A \ D NOGUCHI (UT) HDVT 9 Feb 2008 23 / 33

(iii) Lang 14 (Y.T. Siu-Z.K. Yeung 1996 1998 M. McQuillan 2001) A D f : C A \ D 9 NOGUCHI (UT) HDVT 9 Feb 2008 23 / 33

(iii) Lang 14 (Y.T. Siu-Z.K. Yeung 1996 1998 M. McQuillan 2001) A D f : C A \ D 9 Bloch- NOGUCHI (UT) HDVT 9 Feb 2008 23 / 33

(iii) Lang 14 (Y.T. Siu-Z.K. Yeung 1996 1998 M. McQuillan 2001) A D f : C A \ D 9 Bloch- X κ(x ) A NOGUCHI (UT) HDVT 9 Feb 2008 23 / 33

(iii) Lang 14 (Y.T. Siu-Z.K. Yeung 1996 1998 M. McQuillan 2001) A D f : C A \ D 9 Bloch- X κ(x ) A 15 ( -Winkelmann- 2007) (i) π : X A (ii) κ(x ) > 0. NOGUCHI (UT) HDVT 9 Feb 2008 23 / 33

(iii) Lang 14 (Y.T. Siu-Z.K. Yeung 1996 1998 M. McQuillan 2001) A D f : C A \ D 9 Bloch- X κ(x ) A 15 ( -Winkelmann- 2007) (i) π : X A (ii) κ(x ) > 0. f : C X NOGUCHI (UT) HDVT 9 Feb 2008 23 / 33

κ(x ) > 0 X Bloch- 15 X Green-Griffiths NOGUCHI (UT) HDVT 9 Feb 2008 24 / 33

κ(x ) > 0 X Bloch- 15 X Green-Griffiths 16 X Albanese κ(x ) > 0 q(x ) dim X f : C X NOGUCHI (UT) HDVT 9 Feb 2008 24 / 33

κ(x ) > 0 X Bloch- 15 X Green-Griffiths 16 X Albanese κ(x ) > 0 q(x ) dim X f : C X 17 D = q i=1 D i P n (C) q n + 1 deg D n + 2 f : C P n (C) \ D NOGUCHI (UT) HDVT 9 Feb 2008 24 / 33

1987 Borel NOGUCHI (UT) HDVT 9 Feb 2008 25 / 33

1987 Borel P 2 (C), f : C P 2 (C) \ {z 0 = 0} {z 1 = 0} {z 2 0 + z 2 1 + z 2 2 = 0} M. Green (1974) 10 NOGUCHI (UT) HDVT 9 Feb 2008 25 / 33

1987 Borel P 2 (C), f : C P 2 (C) \ {z 0 = 0} {z 1 = 0} {z 2 0 + z 2 1 + z 2 2 = 0} M. Green (1974) 10 Acta(2004) Nevannlinna Ahlfors P 1 D. Drasin Math. Review This outstanding paper... NOGUCHI (UT) HDVT 9 Feb 2008 25 / 33

1987 Borel P 2 (C), f : C P 2 (C) \ {z 0 = 0} {z 1 = 0} {z 2 0 + z 2 1 + z 2 2 = 0} M. Green (1974) 10 Acta(2004) Nevannlinna Ahlfors P 1 D. Drasin Math. Review This outstanding paper... p : X S K X /S NOGUCHI (UT) HDVT 9 Feb 2008 25 / 33

18 2004 dim X /S = 1 D X f : C X g = p f : C S ϵ > 0 C(ϵ) > 0 T f (r; [D]) + T f (r; K X /S ) N 1 (r; f D) + ϵt f (r) + C(ϵ)T g (r) ϵ. NOGUCHI (UT) HDVT 9 Feb 2008 26 / 33

18 2004 dim X /S = 1 D X f : C X g = p f : C S ϵ > 0 C(ϵ) > 0 T f (r; [D]) + T f (r; K X /S ) N 1 (r; f D) + ϵt f (r) + C(ϵ)T g (r) ϵ. f : C X s-dim(f ) Y X f (C) C(Y ) Y transc-deg C C(Y ) = dim Y dim X. NOGUCHI (UT) HDVT 9 Feb 2008 26 / 33

18 2004 dim X /S = 1 D X f : C X g = p f : C S ϵ > 0 C(ϵ) > 0 T f (r; [D]) + T f (r; K X /S ) N 1 (r; f D) + ϵt f (r) + C(ϵ)T g (r) ϵ. f : C X s-dim(f ) Y X f (C) C(Y ) Y transc-deg C C(Y ) = dim Y dim X. S(f ) = {ϕ C(Y ); T (r; f ϕ) ϵt f (r) ϵ, ϵ > 0}. NOGUCHI (UT) HDVT 9 Feb 2008 26 / 33

S(f ) C(Y ) NOGUCHI (UT) HDVT 9 Feb 2008 27 / 33

S(f ) C(Y ) s-dim(f ) = transc-deg C S(f ) NOGUCHI (UT) HDVT 9 Feb 2008 27 / 33

S(f ) C(Y ) 19 s-dim(f ) = transc-deg C S(f ) f : C X s-dim(f ) < dim X 9 ( Bloch- ) 14 (Lang ) f J k (f )(k >> 1) s-dim(j k (f )) = dim J k (f )(C) Zar NOGUCHI (UT) HDVT 9 Feb 2008 27 / 33

20 f : C X κ(x ) = dim X = 2, s-dim(f ) = 1. f f NOGUCHI (UT) HDVT 9 Feb 2008 28 / 33

20 f : C X f κ(x ) = dim X = 2, s-dim(f ) = 1. f S p : X S g = p f : C S T g (r) ϵt f (r) ϵ. NOGUCHI (UT) HDVT 9 Feb 2008 28 / 33

20 f : C X f κ(x ) = dim X = 2, s-dim(f ) = 1. f S p : X S g = p f : C S T g (r) ϵt f (r) ϵ. S K X /S NOGUCHI (UT) HDVT 9 Feb 2008 28 / 33

20 f : C X f κ(x ) = dim X = 2, s-dim(f ) = 1. f S p : X S g = p f : C S T g (r) ϵt f (r) ϵ. S K X /S T f (r; K X /S ) T f (r). NOGUCHI (UT) HDVT 9 Feb 2008 28 / 33

20 f : C X f κ(x ) = dim X = 2, s-dim(f ) = 1. f S p : X S g = p f : C S T g (r) ϵt f (r) ϵ. S K X /S T f (r; K X /S ) T f (r). T f (r) ϵt f (r) ϵ. (q.e.d) NOGUCHI (UT) HDVT 9 Feb 2008 28 / 33

11 NOGUCHI (UT) HDVT 9 Feb 2008 29 / 33

11 X D = i D i X f : C X T f (r; [D]) + T f (r; K X ) i N 1 (r; f D i ) + ϵt f (r) ϵ, ϵ > 0. NOGUCHI (UT) HDVT 9 Feb 2008 29 / 33

11 X D = i D i X f : C X T f (r; [D]) + T f (r; K X ) i N 1 (r; f D i ) + ϵt f (r) ϵ, ϵ > 0. D NOGUCHI (UT) HDVT 9 Feb 2008 29 / 33

X n X P N (C) π : X P n (C) D X E = π D P n (C) NOGUCHI (UT) HDVT 9 Feb 2008 30 / 33

X n X P N (C) π : X P n (C) D X E = π D P n (C) π π NOGUCHI (UT) HDVT 9 Feb 2008 30 / 33

X n X P N (C) π : X P n (C) D X E = π D P n (C) π π f : C P n (C) {deg E n 1}T f (r) N 1 (r; f E) + ϵt f (r) ϵ, ϵ > 0, NOGUCHI (UT) HDVT 9 Feb 2008 30 / 33

X n X P N (C) π : X P n (C) D X E = π D P n (C) π π f : C P n (C) {deg E n 1}T f (r) N 1 (r; f E) + ϵt f (r) ϵ, ϵ > 0, NOGUCHI (UT) HDVT 9 Feb 2008 30 / 33

X n X P N (C) π : X P n (C) D X E = π D P n (C) π π f : C P n (C) {deg E n 1}T f (r) N 1 (r; f E) + ϵt f (r) ϵ, ϵ > 0, f : C X T f (r; [D]) N 1 (r; f D) + m f (r, D) + ϵt f (r) ϵ, ϵ > 0. X NOGUCHI (UT) HDVT 9 Feb 2008 30 / 33

Green-Griffits NOGUCHI (UT) HDVT 9 Feb 2008 31 / 33

Green-Griffits f : C X π : X P n (C), D X E P n (C) NOGUCHI (UT) HDVT 9 Feb 2008 31 / 33

Green-Griffits f : C X π : X P n (C), D X E P n (C) (deg E n 1)T g (r) N 1 (r; g E) + ϵt g (r) ϵ. NOGUCHI (UT) HDVT 9 Feb 2008 31 / 33

Green-Griffits f : C X π : X P n (C), D X E P n (C) (deg E n 1)T g (r) N 1 (r; g E) + ϵt g (r) ϵ. N(r; g E) N 1 (r; g E) (n + 1)T g (r) m g (r; E) + ϵt g (r) ϵ. NOGUCHI (UT) HDVT 9 Feb 2008 31 / 33

N 1 (r; f D) N(r; g E) N 1 (r; g E) (n + 1)T g (r) m g (r; E) + ϵt g (r) ϵ. NOGUCHI (UT) HDVT 9 Feb 2008 32 / 33

N 1 (r; f D) N(r; g E) N 1 (r; g E) (n + 1)T g (r) m g (r; E) + ϵt g (r) ϵ. T f (r; [D]) N 1 (r; f D) + m f (r, D) + ϵt f (r) ϵ NOGUCHI (UT) HDVT 9 Feb 2008 32 / 33

N 1 (r; f D) N(r; g E) N 1 (r; g E) (n + 1)T g (r) m g (r; E) + ϵt g (r) ϵ. T f (r; [D]) N 1 (r; f D) + m f (r, D) + ϵt f (r) ϵ m f (r; D) m g (r; E) T f (r; [D]) (n + 1)T g (r) m g (r; D) + ϵt g (r) + m f (r; D) (n + 1)T g (r) + ϵt g (r) ϵ. NOGUCHI (UT) HDVT 9 Feb 2008 32 / 33

K X = π K P n (C) + D T f (r; K X ) = (n + 1)T g (r) + T f (r; [D]). NOGUCHI (UT) HDVT 9 Feb 2008 33 / 33

K X = π K P n (C) + D T f (r; K X ) = (n + 1)T g (r) + T f (r; [D]). T f (r; K X ) ϵt g (r) ϵ. NOGUCHI (UT) HDVT 9 Feb 2008 33 / 33

K X = π K P n (C) + D T f (r; K X ) = (n + 1)T g (r) + T f (r; [D]). T f (r; K X ) ϵt g (r) ϵ. K X T f (r; K X ) T g (r) NOGUCHI (UT) HDVT 9 Feb 2008 33 / 33

K X = π K P n (C) + D T f (r; K X ) = (n + 1)T g (r) + T f (r; [D]). T f (r; K X ) ϵt g (r) ϵ. K X T f (r; K X ) T g (r) T g (r) ϵt g (r) ϵ, ϵ > 0. NOGUCHI (UT) HDVT 9 Feb 2008 33 / 33

K X = π K P n (C) + D T f (r; K X ) = (n + 1)T g (r) + T f (r; [D]). T f (r; K X ) ϵt g (r) ϵ. K X T f (r; K X ) T g (r) T g (r) ϵt g (r) ϵ, ϵ > 0. P n (C) ( 13) NOGUCHI (UT) HDVT 9 Feb 2008 33 / 33