H21環境地球化学6_雲と雨_ ppt

Similar documents
H22環境地球化学4_化学平衡III_ ppt

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

09_organal2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

( ) ,

現代物理化学 1-1(4)16.ppt

untitled

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

現代物理化学 2-1(9)16.ppt

Microsoft Word - 11問題表紙(選択).docx

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

I ( ) 2019

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

3章 問題・略解

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

LLG-R8.Nisus.pdf

30

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Note.tex 2008/09/19( )

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

追加演習問題

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

TOP URL 1

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

0201

2

Untitled

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2


The Physics of Atmospheres CAPTER :

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

gr09.dvi

1

meiji_resume_1.PDF

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co



,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

i 18 2H 2 + O 2 2H 2 + ( ) 3K

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Donald Carl J. Choi, β ( )

untitled


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

pdf


本文/目次(裏白)

36 th IChO : - 3 ( ) , G O O D L U C K final 1

日歯雑誌(H19・5月号)済/P6‐16 クリニカル  柿木 5

Part () () Γ Part ,

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

NewsLetter-No2

日歯雑誌(H22・7月号)HP用/p06‐16 クリニカル① 田崎

05Mar2001_tune.dvi

KENZOU Karman) x

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2


() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

001_046_物理化学_解答_責_2刷_Z06.indd

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

untitled

薄膜結晶成長の基礎2.dvi

QMII_10.dvi

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

総研大恒星進化概要.dvi

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()]

1 2 2 (Dielecrics) Maxwell ( ) D H

KENZOU

= = = = = = 1, 000, 000, 000, = = 2 2 = = = = a,


m 3 /s

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2


From Evans Application Notes

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.


Transcription:

1

2

3 40 13 (0.001%) 71 24,000 (1.7%) 385 425 111 1,350,000 (97%) 125 (0.009%) 40 10,000 (0.7%) 25 (0.002%) 10 3 km 3 10 3 km 3 /y

4 +1.3 +5.8 (21) () ( )

5 HNO 3, SO 2 etc

6

7 2009年度 環境地球化学 大河内 10種雲形と発生高度 15 km 巻雲 巻積雲 巻層雲 10 km 高積雲 5 km 高層雲 乱層雲 層積雲 0 km 層雲 上層雲 巻雲 巻積雲 対流圏上層の雲 ほとんど氷晶 中層雲 高積雲 上層 一部氷晶 下層雲を刺激 (シーダー) 下層雲 層雲 凝結核 多 水分量 高 雲水量(LWC) 大

8

9 PV γ = const γ= C p / C v cf. PV = const ( ) C p C v T 2 T 1 = V 1 V 2 γ- 1

10 P 2 T 2 V 2-47 q P 1 T 1 V 1

11 2009年度 環境地球化学 大河内 雨の生成機構 暖かい雨 水蒸気が大量に発生する低緯度 冷たい雨 中 高緯度

12 µ 0.001 mm 0.1 mm 0.1 mm 3 mm

13 2009年度 環境地球化学 大河内 静止空気中を落下する水滴の形 13

14 10 4 10 3 10 2 10 1 S/V (cm -1 ) V t (cm sec -1 ) k g (cm sec -1 ) S/V = 6 D p k g V t D p V t = 958 1 - exp - 0.1710 k g 1.147 10 0 k g = K g D p D p V t 2 + 0.6 ν 1 2 ν K g 1 3 10-1 10-2 10-1 10 0 10 1 Diameter D p (mm) K g 14 ν

15 (Cloud Condensation Nuclei,CCN) (nucleation scavenging) CCN (Cloud Interstitial Aerosol,CIA) CCN

16 µm < 1 µm CCN Junge d 0.4 µm 0.4 µm d 2 µm d Whitby (fine) d 2 µm d 0.1 µm 0.1 µm d (coarse) 2 µm d 2 2 µm µm

17 1 % CCN 10 2 cm -3 10 3 cm -3 S N C N c = CS k (0.2 < k <0.5) C=310, k=1/3 C=6000, k=2/5

18 CCN 1 % µm 0.1 µm 0.01 CCN 1 % 10-20 % CCN

19

20 (Clausius-Clapeyron) 1 de s e dt = ΔH RT 2 s e s ΔH

21 r* ( ) e 2σ e = e exp s nktr * e s σ n k (1.381 x 10-23 J deg -1 molecile -1 ) T (K) = (e e S )/e S 100

22 0.5 µm X 0.4%(X) 0.4 % ( µm) 0.5

23 () e e = f eʼ e f

24 m (M s ) r i(m / M s ) 4 3 πr3 ρ m / M w ρʼ M w i f = 4 3 πr3 ρ m / M w = 1+ 4 3 πr3 ρ m / M w + im / M s imm w 4 M s 3 πr3 ρ m 1

25 i = C C =1+ (n 1)α Π = CRT i R C (mol/l)

26 r*eʼ e = exp 2 σ e s n ktr * 1+ ( ) eʼ e s imm w 4 M s 3 πr3 ρ m 1

27 0.4 % ( < 0.5 µm) 1 A 2 B ( ) 0.5 3 0.4 %

28

29 20µm: ( ph CCN 1

30 interceptional collision inertial collision diffusional collision

31 (d 0.1 µm) (d 1 µm) 0.1 µm d µm 1 Greenfield gap

32

33 (Liquid Water Content, LWC) L 0.05-3 (g of water m -3 ) 0.02-0.5 (g of water m -3 ) (liquid water mixing ratio) w L w L (vol water/vol air) = L 10-6 (g m -3 )

34 C f A aq (mol L 1 air ) C g (mol L 1 air ) p g = C g RT C aq = [C A (aq)](mol L water 1 ) w L (L water L air 1 ) K H p g w L =10 6 K H p g L =

35 f A = K H p g w L RT p g = K H RTw = L 10 6 K H RTL X A aq = C aq C aq + C g = f A C g C g ( f A +1) = f A 1+ f A K H RTw L = 10 6 K H RTL X A aq = 1+ K H RTw L 1+10 6 K H RTL

36 Moderately soluble Very soluble

37 SO 2 + H 2 O ( ) SO 2 H 2 O (aq) [SO 2 H 2 O] = K H (SO 2 ) p SO2 SO 2 H 2 O (aq) HSO 3 - + H + (aq) K = [HSO ][H + ] 3 a1 [SO H O] 2 2 HSO 3 - SO 3 2- + H + (aq) K = [SO 2 ][H + ] 3 a 2 [HSO ] 3

38 [SO 2 (aq)] tot = [S(IV )] tot = [SO 2 H 2 O(aq)]+ [HSO 3 (aq)]+ [SO 3 2 (aq)] = [SO H O(aq)] 1+ K a1 2 2 [H + ] + K a1k a2 [H + ] 2 K (SO ) 1+ K a1 H 2 [H + ] + K a1k = a 2 [H + ] 2 p SO2 K eff (SO 2 )

39 K eff (SO 2 ) K eff (CO 2 ) ph 1 8 K eff (SO 2 ) K eff (CO 2 ) 44

40 SO 2 H 2 O HSO 3- SO 2-3 S SO 4 2- S 6 H 2 O 2 O 3 O 2 ( ) NO 2

41 H 2 O 2 (aq) + H 2 O ( ) HO 2- (aq) + H 3 O + (aq) HSO 3- (aq) + H 2 O 2 (aq) SO 2 OOH 2- (aq) + H 2 O ( ) SO 2 OOH 2- (aq) + H 3 O + (aq) H 2 SO 4 (aq) + H 2 O ( )

42 d[s(iv )] dt = k[h 3 O+ (aq)][h 2 O 2 ][HSO 3 (aq)] 1+ K[H 3 O + (aq)] k = (7.5 ±1.6) 10 7 M 1 s 1, K =13 M 1 ph ph S(IV)

43 ph 5.5 O 3 H 2 O 2 S(IV) + O 3 (aq) S(VI) + O 2 (aq) d[s(iv )] dt = {k 0 [SO 2 H 2 O(aq)] + k 1 [HSO 3 (aq)] +k 2 [SO 3 2 (aq)]}[o 3 (aq)] k 0 = (2.4 ±1.1) 10 4 M 1 s 1 k 1 = (3.7 ± 0.7) 10 5 M 1 s 1 k 2 = (1.5 ± 0.6) 10 9 M 1 s 1

44

45 1) ΔV = 0 2) ΔP = 0 3) ΔT = 0 4) P q = 0 V

46 (reversible process) P ext (irreversible process) P V 1 46 P = nrt V T=const V 2 w rev w irrev V

47 H = U + PV ΔH = q p H U P V ΔH = ΔU + PΔV ΔH = ΔU + Δ(PV) (sensible heat)

48 ( ) q = CΔT Q, ΔT

49 C = lim Δq ΔT 0 ΔT = d q dt C v C v = d q dt dv = 0 = d q v dt = du dt C p C p = d q dt dp= 0 = d q p dt = dh dt

50 C p = + nr C v C p C v R PV dʼq = du - dʼw = du - (-P ext dv) = du + P ext dv P ext = P gas = P dʼq = du + PdV PV=nRT d(pv) = P dv + V dp = nr dt P dv = nr dt - V dp dʼq = du + nr dt - V dp

51 C αn ncα C(1-α) Cʼ =C[1+(n-1)α]

52