LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM

Similar documents
2012 A, N, Z, Q, R, C

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C



, = = 7 6 = 42, =


さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

koji07-01.dvi

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

tnbp59-21_Web:P2/ky132379509610002944

newmain.dvi

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

Super perfect numbers and Mersenne perefect numbers /2/22 1 m, , 31 8 P = , P =

linearal1.dvi

O E ( ) A a A A(a) O ( ) (1) O O () 467

( )

DVIOUT-HYOU

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


熊本県数学問題正解

高校生の就職への数学II


A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

II

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

日本内科学会雑誌第102巻第4号

i

untitled

( ) X x, y x y x y X x X x [x] ( ) x X y x y [x] = [y] ( ) x X y y x ( ˆX) X ˆX X x x z x X x ˆX [z x ] X ˆX X ˆX ( ˆX ) (0) X x, y d(x(1), y(1)), d(x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

SO(2)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

R R 16 ( 3 )

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

kou05.dvi

29


Part () () Γ Part ,

橡魅力ある数学教材を考えよう.PDF


ii

Note.tex 2008/09/19( )

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2


プリント

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

I II

PowerPoint プレゼンテーション


1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

untitled

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (



I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

koji07-02.dvi

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin


合併後の交付税について

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Gmech08.dvi

(1) (kn/m 3 )


:010_ :3/24/2005 3:27 PM :05/03/28 14:39

数学概論I

untitled

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

空き容量一覧表(154kV以上)

I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

meiji_resume_1.PDF

PSCHG000.PS

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =


OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

Transcription:

LCM,GCD 2017 4 21 LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM(a, b) = m 1 + m 2 CM(a, b), qm 1 CM(a, b) m 1, m 2 CM(a, b), m 1 > m 2 = m 1 m 2 CM(a, b). CM(a, b) LCM(a, b), (Least common multiple). CD(a, b) GCD(a, b), (Greatest common divisor). a = bq + r, r 0 CD(a, b) = CD(b, r) ( ) 1

1 m CM(a, b) = L m, (L = LCM(a, b)) Proof m L, m = ql + r, r < L. L, m CM(a, b) r = m ql CM(a, b)., r = 0. LCM GCD. ( ) 2 d CD(a, b) = d δ, (δ = GCD(a, b)) Proof d CD(a, b), δ = GCD(a, b), d δ LCM d, δ LCM. L 0 = LCM(d, δ).,l 0 δ. L 0 = δ.l 0 δ. d, δ CD(a, b) a = a d, b = b d, a = a δ, b = b δ. a = a d, a = a δ = a CM(d, δ) 1 a LCM(d, δ). a 0, a = a 0 L 0 b 0, b = b 0 L 0 a = a 0 L 0, b = b 0 L 0 = L 0 CD(a, b), L 0 δ = GCD(a, b). L 0 = δ = GCD(a, b). d δ 3 ab = LCM(a, b) GCD(a, b) L = LCM(a, b), δ = GCD(a, b), a L L = ab, b L L = ba. ab CM(a, b) ab L. ab = LD D. ab = LD = ab D, ab = ba D = b = b D, a = a D 2

D CD(a, b). 2,D δ. δ = De e. b = b δ = Db, δ = De b De = Db ; b e = b. L = ab = ab e, L = a b = ba e. L/e = L 0, L 0 = a b, L 0 = b a. L 0 CM(a, b). 1 L 0 L. L L 0 = fl L L 0 = L; L = L 0, e = 1. δ = D ab = LD = Lδ. 4 a, b:, a bc = a c Proof bc = ak k Z. GCD(a, b) = 1 ab = LCM(a, b). X = bc = ak CM(a, b). X ab = LCM(a, b). X = abs, (s Z). X = bc = abs c = as; a c. 1.1,, 0 a, b c a = bc b a (divisor), a b (multiple). b a ( (factor)). Z (ring of integers).,,. Z b bz (b) b (ideal). (b) = bz b (b) (generator). b = 1 (1) = Z. a b a (b). k, a = bk. b a, b a. 1.2 d a, b, d = ax + by x, y.. 3

a = 11, b = 8 d 1. 1 = 11x+8y x, y. y = 1, 2, 3, 1 8y 11 1. 1: 1 = 11x + 8y x, y y 1 2 3 4 5 6 7 1 8y 7 15 23 31 39 47 55 11 4 7 10 2 5 8 0, y = 7, 11x = 1 8y = 55, x = 5. 1 = 55 + 56 = 11( 5) + 8 7. 11 8, 1 : 1 = 11 11 11 11 11 + 8 + 8 + 8 + 8 + 8 + 8 + 8., d a, b d = ax + by.,.,. 2 J d = ax + by x, y, d ax + by, Z J. J = {ax + by x, y Z}. J 2. 1. α, β J α + β J, 2. z Z, α J zα J. 1 a, b a = bq + r, 0 r < b r. 4

J (Z ) (ideal). (b) ( principal ideal). J {ax + by x, y Z} a, b az + bz. (a, b). (2) 1 J z Z z J. J = Z. (a, b). (a, b),,. 2.1 J J α = ax + by. a, b d. a = a d, b = b d a, b α = ax + by = a dx + b dy = (a x + b y)d. α = (a x + b y)d d. J + = {α > 0 α J}, a, b d J +. d J +. J +,. δ. α δ q, r α = qδ + r, 0 r < δ. r = α + ( q)δ (2) δ J ( q)δ J. α J (1) α+( q)δ J. r = α+( q)δ J. 0 r J. δ J + r < δ r = 0. α = qδ. α (δ). α < 0 α J α (δ). J (δ). δ J, (δ) J. J = (δ). a, b J = (δ) δ a, b. δ a, b. d 1 a, b a = a 1 d 1, b = b 1 d 1 a 1, b 1. δ J δ = ax 0 + by 0 δ = ax 0 + by 0 = a 1 d 1 x 0 + b 1 d 1 y 0 = (a 1 x 0 + b 1 y 0 )d 1 5

δ d 1. δ a, b d., δ = d. J = (d). J d. d J d J +. x, y a, b d d = ax + by x, y 1.3. a, b 3. v 0 = (1, 0, a), v 1 = (0, 1, b). a b q 1, r 1 a = bq 1 + r 1. a = bq 1 + r 1 (b, r 1 ) (a, b) (b, r 1 ). r 1 = a + ( q)b (a, b) (b, r 1 ) (a, b). (b, r 1 ) = (a, b). v 2 v 2 = (1, q 1, r 1 ). v 2 = v 0 q 1 v 1 2: d = ax + by v 0 1 0 a v 1 q 1 0 1 b v 2 1 q 1 r 1 r 1 > 0 b r 1 q 2, r 2 b = r 1 q 2 + r 2. v 3 v 3 = v 1 q 2 v 2,. b > r 1 >. r h 1 > r h = 0 h > 0. v h 1 = (x, y, d) d = r h 1 a, b (a, b) = (b, r 1 ) = = (r h 1, r h ) = (r h 1 ). x, y ax + by = d. 6

3: a = 11, b = 8 1 0 a = 11 1 0 1 b = 8 2 1 1 3 1 2 3 2 x = 3 y = 4 d = 1 a = 11, b = 8. v 0, v 1,,. x = 3, y = 4, d = 1., 11 3 + 8 ( 4) = 1. 7

d = ax + by. w w = (a, b, 1). v 0 w = (1, 0, a) (a, b, 1) = 1 a a = 0, v 1 w = 1 b b = 0 v 2 w = v 0 w q 1 v 1 w = 0, v 3 w = v 1 w q 2 v 2 w = 0, v h 1 w = 0. v h 1 = (x, y, d) v h 1 w = ax + by d. d = ax + by. 3 a, b, c a, b d 1 a b (relatively prime). a b (a, b) 1 (a, b) = Z. a, b a, b, a, b. 1 = ax + by x, y. a, b, a, b 0. a, b, c. 1 a, b, c a, b. a bc a c. Proof a bc ak = bc k. a, b 1 = ax + by x, y. c c = acx + bcy = acx + aky = a(cx + ky). f = cx + ky c = af. a c. a, b (a, b) = (1).. (a, b) = (1), bc (a) c (a). 8

4 D.A.(, ). p a, b : ab 0 mod p a 0 b 0 mod p. ab 0 mod p a 0 b 0 mod p., a, p. b. p b Q r p = bq + r, r < b. ab = pm p = bq + r a ap = abq + ar = pmq + ar. p(a mq) = ar m = a mq ar = pm, 0 r < b. b r = 0. p = bq. p Q = 1; p = b. :b 0 mod p. p J = pz.. a J = pz p. a p 1 1 = am + pn n, m. a J., J,.. 5. σ(a) a, σ(a). P, m σ(p e ) + m q a = P e q m P ( ).. P σ(a) P a = (P 2)Maxp(a) m(p 1). (1) Maxp(a) a. a m P ( ). 9

6 φ φ(a). φ(p e ), (e > 1)., 1 φ(p e ) + 1 q a = P e q P φ. P = 2. 4: P = 2 φ e a φ(a) 2 12 2 2 3 4 3 40 2 3 5 16 5 544 2 5 17 256 9 131584 2 9 257 65536 17 8590065664 2 17 65537 4294967296,a 3,5,17,257,65537.,, P = 2 q = φ(p e ) + 1 = 2 e 1 + 1 e 1 = 2 m q. 7 P, m q = P e+1 1 + m a = P e q P, m, ( subperfect number), q ( subprime number)... a = P e q P σ(a) = P σ(p e q) = (P e+1 1)(q + 1) = P a (q + 1 P e ) q = P e+1 1 + m q + 1 P e = m P σ(a) = P a m.. 10

P, m ( subperfect number with translation parameter m).. P > 2, m = 0 P e+1 1 + m. σ(p e ) q = σ(p e ) 1 + m a = P e q., m P e+1 1 + m. 7.1 a = P f Q(Q : ). P σ(a) = (P f+1 1)(Q + 1) = P a + P f+1 (Q + 1) m = P σ(a) P a = P f+1 (Q + 1). Q = P f+1 + m 1. P, m. 7.2 P = 3, m = 3 P = 3 Q = 3 e+1 1 + m. m. m = 1, 7, 10 Q. m = 3. 5, 5 7 11, 2.. A = 7509466514979724904009806156256961 B = 3 35 150094635296999123 11

5: [P = 3, m = 3], e a 1 33 3 11 2 261 3 2 29 3 2241 3 3 83 7 14353281 3 7 6563 9 1162300833 3 9 59051 13 7625600673633 3 13 4782971 14 68630386930821 3 14 14348909 23 26588814359145789645441 3 23 282429536483 25 2153693963077252343529633 3 25 2541865828331 35 A B 7.3 a = P f rq(r < q : ). P σ(a) = (P f+1 1)(r + 1)(q + 1), P a m = P f+1 rq m. N = P f+1 1, A = (r + 1)(q + 1), B = rq, = r + q NA = (P f+1 1)(r + 1)(q + 1), P a m = P f+1 rq m = (N + 1)B m. A = B + + 1 NB + N( + 1) = P f+1 rq m = (N + 1)B m. N( + 1) = B m. q 0 = q N, r 0 = r N, B 0 = q 0 r 0 B 0 = B N + N 2. N( + 1) = B m = B 0 + N N 2. D = N(N + 1) + m, B 0 = D.. f m N = P f+1 1, D = N(N + 1)+m D, B 0 = D q = q 0 +N, r = r 0 +N., a = P f rq. 12

8 P = 3, m = 0 m = 0 q = 3 e+1 1 + m. 2σ(a) = 3a... 9 P :, m = 0 P σ(a) = P a. P = 2, P, m = 0. 1 P = 3, a = 2 P :, m = 0. Proof., σ(a) P,σ(a) = P ε L(L P ). P σ(a) = P P ε L = P a., a = P ε 1 LP. N = P ε 1, M = P L a = P ε 1 M, P a = (N + 1)M. M P, σ(a) = σ(m)σ(p ε 1 ). P σ(a) = P a, P σ(a) = σ(m)p σ(p ε 1) = Nσ(M). Nσ(M) = (N + 1)M. N N + 1 = M σ(m). N, M = kn, σ(m) = k(n + 1) k N + 1., σ(m) M = k. M = kn, k M, σ(m) = M + k M :,k = 1. 13

M :, P = 3, L = 1, a = 4. M = P L. ( ) 14