画像工学特論

Similar documents
[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

Gmech08.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

TOP URL 1

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


³ÎΨÏÀ

v_-3_+2_1.eps

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

Microsoft Word - 信号処理3.doc

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

振動と波動

untitled

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

phs.dvi

I

05Mar2001_tune.dvi

pdf

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

液晶の物理1:連続体理論(弾性,粘性)

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

( ) ( )

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

数学の基礎訓練I

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Gmech08.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m



2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

v er.1/ c /(21)

SFGÇÃÉXÉyÉNÉgÉãå`.pdf


impulse_response.dvi

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

高等学校学習指導要領

高等学校学習指導要領

TOP URL 1

重力方向に基づくコントローラの向き決定方法

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Gmech08.dvi

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

Fr

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

II 1 II 2012 II Gauss-Bonnet II

sekibun.dvi

QMII_10.dvi

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

Untitled

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

数値計算:フーリエ変換

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s



1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

QMI_09.dvi

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

QMI_10.dvi

29

DE-resume

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

untitled

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

08-Note2-web

Transcription:

.? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97

. : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density : [S] = X = [ x t ] [ ] Power spectrum : [S dω] = X t t = [ x ] [ Energy spectral density : X ] = [ x t ] 36/97

. : f i (i (,,N)) E[f] N N f i (4) i= σ f E[ (f E[f]) ] (5) : (x i, y i ) C = E [ x y ], or r = E[x y ] E [ x ] E [ y ] (6) y y (x i = x i E[x], y i = y i E[y]) x x No correlation Positive correlation 37/97

.3 x, y E[x] lim x(t)dt = x(t) t ( ) (7) e.g. x(t): y(t): x(t) t y(t) t 38/97

(cross-correlation function) C xy (τ) = lim x(t)y(t+τ)dt = x(t)y(t+τ) t (8) (y(t) = x(t)) (auto-correlation function) C(τ) = lim ) x(t)x(t+τ)dt = x(t)x(t+τ) t (9) ( R(τ) = C(τ) C(0) = x(t)x(t+τ) t x(t), R(0) = t 39/97

(e.g. ) x(t) = Acosω t C(τ) = lim (Acosω t)(acosω (t+τ))dt = lim = A lim [ = A lim ( cos ω tcosω τ cosω tsinω tsinω τ ) dt +cosω t dtcosω τ } {{ } = ( (e.g. ) x(t) = Asinω t = Acos ω t π ) [ C(τ) = A lim sinω t dt }{{} =0 +cos ( ( ω t π )) dtcosω τ (Acosω t)(acosω (t+τ))dt ] sinω τ = A cosω τ R(τ) = cosω τ sin ( ( ω t π )) ] dtsinω τ = A cosω τ R(τ) = cosω τ t 40/97

( ) (C( τ) = C(τ)) C( τ) = lim = lim = lim τ x(t)x(t τ)dt τ x(t +τ)x(t )dt τ = 0 x(t +τ)x(t )dt = C(τ) (x(t)±x(t+τ)) dt 0 LHS = x (t)dt+ x (t+τ)dt }{{} } {{ } C(0) 0 C(0) 0 = (C(0)±C(τ)) 0 = RHS C(0) C(τ) ± (t = t τ) ( ) τ x(t)x(t+τ)dt } {{ } C(τ) 4/97

C(τ) C (τ) = dc dτ = lim x(t) x(t+τ) } τ {{} =x (t+τ) dt = x(t)x (t+τ) t (Replacing t+τ = ξ dt = dξ,because (t+τ) τ = ) +τ = lim x(ξ τ)x (ξ)dξ +τ = lim x(ξ τ)x (ξ)dξ = x(t τ)x (t) t x(t) x (t) C(τ) C (τ) = d C dτ = x(t)x (t+τ) t ( t τ = η ( (t τ) τ = )) ( = lim x (η)x (η +τ) ) dη = x (t)x (t+τ) t x(t) x (t) x (t) 4/97

.4 : (x(t) R) { 0 x(t) : t = 0 elsewhere : C(τ) = lim = lim = lim π = π x(t)x(t+τ)dt : x(t) = ( X(ω)e jωt dω = ) X (ω)e jωt dω π π X(ω) = x(t)e jωt dt [ ][ ] X (ω)e jωt dω X(ω )e jω (t+τ) dω dt ( ) X (ω)e jωτ X(ω ) e j(ω ω)t dt dω dω π }{{} X (ω)x(ω) lim } {{ } =S(ω) δ(ω ω) e jωτ dω = S(ω)e jωτ dω π C(τ) S(ω) F 43/97

Wiener-Khintchine C(τ) = π S(ω) = S(ω)e jωτ dω (0) C(τ)e jωτ dτ () x(t) F X(ω) x(t)x(t+τ) t X(ω)X (ω) t C(τ) F S(ω) t : 44/97

.5 C xy (τ) = π S xy (ω) = S xy (ω)e jωτ dω () C xy (τ)e jωτ dτ (3) X (ω)y(ω) S xy (ω) = lim = X (ω)y(ω) t (4) C xy (τ) = lim x(t)y(t+τ)dt = lim x (t)y(t+τ)dt ( x(t),y(t) R) ( )( ) = lim X (ω)e jωt dω Y(ω)e jω (t+τ) dω dt π ω π ω ( ) = lim X (ω)e jωτ Y(ω π ω ω ) e j(ω ω)t dt dω dω π = lim X (ω)e jωτ Y(ω π ω ω )δ(ω ω)dω dω = lim X (ω)y(ω)e jωτ dω π ω = X (ω)y(ω) lim e jωτ dω = S xy (ω)e jωτ dω π π ω ω 45/97

C xy (τ) = lim S xy (ω) = F {C xy (τ)} x(t)y(t+τ)dt = lim C xy (τ) R ( x(t),y(t) R) y(t)x(t τ)dt = C yx ( τ) C xy ( τ) = C yx (τ) (5) S xy ( ω) = Sxy(ω) (6) S yx (ω) = Sxy(ω) (7) S xy ( ω) = S yx (ω) (8) 46/97

g(r) = f(r + ), = ( 8,6) (Image size:8x8) C f(r) g(r) fg (r) Ĉ fg (r) C fg = F { F G t } (w/o POC) (w/ POC) } Ĉ fg = F { F Ĝ t F = F F, Ĝ = G G F Ĝ = e i(φ G φ F ) ( 8, 6) ( 8.0, 6.0) POC:Phase Only cross-correlation g(r) = f(r + ) G(k) = e ik F(k) F (k)ĝ(k) = eik (φ F (k) is canceled.) Ĉ fg (r) = F { e ik r } = lim L L (π) e ik ( r) dk = lim L Lδ(r ) 47/97

g(r) = f(αθ r + ), = ( 8,6), α =, Θ = ( cosθ sinθ sinθ cosθ ), θ = 30deg (Image size:8x8) Cartesian log-polar Hanning-Win. (x,y) (k x,k y ) (k θ,log k ) (k θ,log k ) f(r) I F (k) = F(k) H{I F (k)} C IF I G = F {(F {H{I F }}) F {H{I G }}} Cross-corr. of I F and I G (k θ,log k ) C IF I G (k) w/o POC w/ POC g(r) I G (k) = G(k) H{I G (k)} ( ) ( ) log scale log scale [0.05, 500] [0.05, 500] k θ [deg] 9.6 9.4 log k 0.343 0.68 [times] k 0.70 0.505 48/97