IMT-Advanced Testbed Development for IMT-Advanced Radio Experiments Toshinori SUZUKI, Noriaki MIYAZAKI, and Satoshi KONISHI IMT-Advanced 3 IMT-2000 IT

Similar documents
UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

Keysight Technologies LTE規格に準拠したトランスミッタのACLR測定

June 27, 2011 Copyright 2011 NTT DOCOMO, Inc. All rights reserved 2 LTE LTE LTE

ohgane

5989_2365JAJP.qxd

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133


次世代モバイルネットワークの概要

LTE移動通信システムのフィールドトライアル

untitled

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

デジタル通信を支える無線技術

LTE V2X a) Huan WANG LTE V2X for Realization of Connected Car Services Riichi KUDO a), Shinpei YASUKAWA, Tomoki MARUKO, Huan WANG, Satoshi NAGATA, and

Keysight MIMO MIMO Cluster n Path n σ n, AoA σ n, AoD Θ n, AoA MS/UE Array Boresight Rx0 Tx0 Θ n, AoD LOS BS Array Boresight Θ n+1, AoA Rx1 Tx1 Path n

indd

1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2

屋外型LTE無線基地局装置(eNodeB)

1

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

IEEE ax:第 6 世代の Wi-Fi テクニカル ホワイト ペーパー

000-OFDM前付き.indd

MIMOからMassive MIMOを用いた伝送技術とクロスレイヤ評価手法

2005 1

P361

( ) ( ) ( ) ( ) ( )

Vol.58 No (Mar. 2017) LAN MAC 1,a) , IoT LAN LAN AP MAC 1 Null Function Data Frame NFDF NFDF LAN NFDF LAN LAN MAC Null

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

1

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

untitled

untitled

10_08.dvi

4 1 7 Ver.1/ MIMO MIMO Multiple Input Multiple Output MIMO = = MIMO LAN IEEE802.11n MIMO Alamouti STBC Space Time Block Code

5989_3443JAJP.qxd

2 1. LAN LAN Aug. 02, 2008 Copyright 2008 Niigata Internet SOCiety & I.Suzuki All Rights Reserved LAN LAN WLAN

スライド 1

TCP-STAR a) Implementation and Evaluation of TCP-STAR: TCP Congestion Control Method for Satellite Internet Hiroyasu OBATA a), Kazuhiro TAIRA, and Ken

untitled


MX370108A/MX269908A LTE IQproducer 製品紹介

IEEE ZigBee 2.4GHz 250kbps O-QPSK DSSS Bluetooth IEEE GHz 3Mbps G-FSK FHSS PC LAN IEEE b 2.4GHz 11Mbps CCK DSSS LAN LAN IEE

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

シャープ技報 第 95 号 2007 年 2 月 携帯電話におけるデジタル放送受信 Digital Broadcast Receiving on a Mobile Phone 野口要治 * Yoji Noguchi 要 旨 本稿では, 携帯端末向けデジタル放送技術について概要を述べる その放送技術の

ITAMI.indd

untitled

Microsoft PowerPoint - ①無線通信システム概要140409

Microsoft Word - _Kazuki_09年7月RCS_papr_final.doc

WLAN WLAN AP WLAN WLAN WLAN AP- WLAN SINR WLAN WLAN CE WLAN WLAN WLAN CE 2 3 WLAN 4 WLAN 2. WLAN [10] AP CE [11] AP CE CE [12] CE AP AP AP WLAN WLAN A

IEEE802.11n LAN WiMAX(Mobile Worldwide Interoperability for Microwave Access) LTE(Long Term Evolution) IEEE LAN Bluetooth IEEE LAN

5989_7698JAJP(POD).pdf

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

OPA134/2134/4134('98.03)

Doctor Thesis Template

5b_08.dvi

GD152

スライド タイトルなし

IEEE e

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

Microsoft PowerPoint - ⑥説明者(太刀川).ppt

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

Signal Processing for Low Complexity Terminals and Pilot Signal Design in Multiple-Input Multiple-Output Systems ( ) ( ) LAN 3.9 Multiple-Input Multip

untitled

OPA277/2277/4277 (2000.1)

MainOfManuscript.dvi

5989_0871JA.qxd

WMN Wi-Fi MBCR i

携帯グループ(完成版)2007

SICE東北支部研究集会資料(2012年)

5988_4096JA.qxd

format


N9080A LTE FDDN9082A LTE TDD LTE FDD/LTE TDD LTE FDD/LTE TDD X 3GPP LTERF RF LTE enbue 3GPP Agilent X 22 LTE FDD/LTE TDD X X CPU I/O 100 X X XX 14 www

2.3 2 WiFi Layer 2 Layer WS Plenary WS Plenary BoF1 BoF2 50 Board WIDE 20 WS Layer 2 Layer 2 ( 1) WiFi a 5GHz (36c

main.dvi

untitled

36 581/2 2012

スライド タイトルなし

JAJP.indd

it-ken_open.key


Run-Based Trieから構成される 決定木の枝刈り法

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

三菱電線工業時報 第 105 号 2008 年 10 月 1 High-speed disaster prevention radio information system R-LCX50-4SL-75 LANIEEE b/g R-LCX50-4SL D 2 1

_CS3.indd

Vol.53 No (July 2012) EV ITS 1,a) , EV 1 EV ITS EV ITS EV EV EV Development and Evaluation of ITS Information Commu

完成卒論.PDF

XFEL/SPring-8

ADC082S021 2 Channel, 50 ksps to 200 ksps, 8-Bit A/D Converter (jp)

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

AV 1000 BASE-T LAN 90 IEEE ac USB (3 ) LAN (IEEE 802.1X ) LAN AWS (Amazon Web Services) AP 3 USB wget iperf3 wget 40 MBytes 2 wget 40 MByt

untitled

PowerPoint プレゼンテーション

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2

Flow Control Information Network 1 /

MLA8取扱説明書

Vol. 45 No. 12 Dec ITS, ITS 1 30 m Evaluation of Autonomous Decentralized System Based Mobile Communications Platform for ITS Services Masashi H

ppt

パナソニック技報

Transcription:

IMT-Advanced Testbed Development for IMT-Advanced Radio Experiments Toshinori SUZUKI, Noriaki MIYAZAKI, and Satoshi KONISHI IMT-Advanced 3 IMT-2000 ITU-R IMT-Advanced 100 Mbit/s 1Gbit/s IMT-Advanced IMT-Advanced OFDM MIMO 1. 2 3 3 2000 International Telecommunication Union Radiocommunications Sector (ITU- R) Systems Beyond IMT-2000 Beyond 3G Van diagram [1] 2005 ITU-R WP8F IMT-2000 IMT-Advanced 2005 Evolved- UTRA (LTE) [2] UMB [3] IMT-2000 IMT-Advanced 100 Mbit/s 1Gbit/s [4], [5] KDDI KDDI R&D Laboratories, Inc. 2 1 15 Ohara, Fujimino-shi, 356 8502 Japan / MIMO (Multiple-Input Multiple-Output) IMT-Advanced 2. 2. 1 1 100 MHz 2 20 MHz 1 IMT-Advanced IMT-2000 ITU-R IMT-Advanced 40 MHz [6] 1 1 R-OFDM (Rotational Orthogonal Frequency Division Multiplexing) 3.1 1 (BS) 1 (MS) 3 1 1 (MS#1) BS MS RF (Radio Module) 854 B Vol. J93 B No. 7 pp. 854 867 c 2010

IMT-Advanced (OMT Operation and Maintenance Terminal) IP RLP-PC (Radio Link Protocol-Personal Computer) 1 RLP-PC 1 Table 1 Major radio parameters of the testbed. 0.5 4 6 55 db 0.25 2.0 db 0.5 2 3 2. 2 2 F-SCH 1 Fig. 1 Testbed system architectures. 855

2010/7 Vol. J93 B No. 7 1 1 3 F-CCH (F-CCCH Forward-Common Control Channel) (F- DCCH Forward-Dedicated Control Channel) 1 2 4 1 5 F-CPICH 1 5 F-CCH F-DCH 2 3 4 6 7 F-CCH F-CPICH 5 F-DCH R-ACH R-CCH 1LB Long Block 6 R-PICH SB Short Block 6 R-DCH 2 6LB 3 4 Single Carrier FDMA (SC-FDMA) R-PICH F-DCH R-DCH 3.1 LTE 3GPP 7 OFDM 0.5 1 20 2 6 2 1 2 5 6 DCH 400 1 DCH 1 400 Fig. 3 3 Multiplexing structure for downlink physical channels. Fig. 2 2 Physical channel structure on the air interface. 1 LTE 1 2 LTE 856

IMT-Advanced Fig. 4 4 Multiplexing structure for uplink physical channels. Fig. 5 5 Downlink frame structure and physical channel mapping. Fig. 6 6 Uplink frame structure and physical channel mapping. 1 2. 3 7 (Forward synchronization) (Reverse synchronization) F-SCH F-CPICH F-CCCH 7 open-loop Power Control info. R-ACH F-CPICH 8 SCH 1 7.68 MHz F-SCH CAZAC 1 ±16 857

2010/7 Vol. J93 B No. 7 Fig. 7 7 Control sequence to connect the data link. F-SCH 122.88 MHz 1 2 30.72 MHz F-CPICH 2 F-SCH R- ACH F-DCCH R-ACH (TA) R-ACH R-PICH R- CCH (CQI Channel Quality Indicator) CQI F-DCH MCS (Modulation and Coding Scheme) R-DCH 2.1 3. 8 Fig. 8 Flow chart to synchronize the downlink signal. 1 3. 1 R-OFDM OFDM MC-CDM (Multi Carrier-Code Division Multiplexing) MC-CDM 858

IMT-Advanced OFDM [7] R-OFDM [8] D =2 (1) (A, B) (F1, F2) 9 F1 F2 MLD (Maximum Liklihood Detection) (X, Y) (A, B) ( ( ) ( )( ) X A cos θ 1 sin θ 1 A )=R 2 = Y B sin θ 1 cos θ 1 B (1) R-OFDM F-DCH R-DCH QPSK D 2 4 16QAM 64QAM D =2 D =4 (2) F-DCH OFDM MLD SC-FDM R-DCH MMSE (Minimum Mean Squared Error) ( ) R 2 cos θ 2 R 2 sin θ 2 R 4 = (2) R 2 sin θ 2 R 2 cos θ 2 R-OFDM UMB [3] 3. 2 [9] 10 L p L c 10 DEC1 DEC2 1 2 MAP L a L c L p (L p L a) π π 1 L c R-OFDM MC-CDM [10] 16QAM 2 (D =2) 1.3 64QAM Duty 0.5 3. 3 MIMO 2 2 2 MIMO SISO (Single-Input Signle-Output) SIMO (Single-Input Multiple-Output) MISO Fig. 9 9 R-OFDM Block diagram of R-OFDM transmission. 10 Fig. 10 Structure of twin turbo decoder. 859

2010/7 Vol. J93 B No. 7 MIMO-OFDM QR M QRM-MLD (QR Decomposition and M-algorithm-Maximum Likelihood Detection) [11], [12] QR-MLD [13], [14] SC-FDM MMSE MIMO-OFDM [10] QRM-MLD 4. 11 2 RF (Radio Frequency) BB (Baseband) 2 RF RF / 4.1 BB BB LIF (Line Interface) LIF MAC (Medium Access Control) RLP (Radio Link Protocol) PC RLP MAC BB BB BB FPGA (Field Programmable Gate Array) DSP (Digital Signal Processor) BB 12 BB 2 4.2 13 31 kw 4. 1 RF 14 RF RF I/Q (In- /Quadrature-phase) DA (Digital/Analog) DA 245.76 MHz IF (Intermediate Frequency) IF 4485/4770 / MHz RF RF RF 10 dbm (PAU Power Amplifier Unit) 4 50 db Fig. 11 11 Photograph of BS (Base Station) cabinets. 860

IMT-Advanced 12 Fig. 12 Photograph of baseband package. 2 Table 2 Specifications of signal processors on baseband package. 40 dbm RF 2 IF IF IF IF IF VGA (Variable Gain Amplifier) AGC (Auto Gain Control) RF DA (1 Giga-Sample Per Second (sps)) AD (250 Msps) 100 MHz 13 Fig. 13 Photograph of measurement truck. 4. 2 15 RLP PC RLP IP LIF-M IP RLP LIF-S 0.5 100 MHz LIF-S MCS MAC RLP MAC 861

2010/7 Vol. J93 B No. 7 Fig. 14 14 RF Block diagrams of RF transmission and reception. Fig. 15 15 Block diagram of baseband transmission and reception. 862

IMT-Advanced MOD MOD QPSK MIMO BTX MIMO BTX IFFT IFFT IFFT OFDM RF RF RF FFT SYNC MS SYNC MS / FFT CCH MS FFT OFDM FFT DETECT DETECT MIMO MRX MIMO MRX LIF-S/M LIF-S/M RLP RLP PC 20D 4dB 2dB 5. 2 RF RF 100 MHz 17 RF 40 dbm SNR (Signal to Noise power Ratio) MIMO 18 R-OFDM PER (Packet Error Rate) SISO 5. RF RF 5. 1 RF 16 16 1(96MHz) 2 (18MHz) 2dB 3 1 100/40 MHz / RF 20 [m] 16 Fig. 16 Measured forward transmission power spectrum. 3 RF Table 3 Measured BS and MS (Mobile Station) RF performances. 863

2010/7 Vol. J93 B No. 7 Fig. 17 17 Overviews of experimental configurations. ITU-R 6 TU (Typical Urban) [15] 30 km/h MCS QPSK 3/4 16 CRC (Cyclic Redundancy Check) [16] 18 R-OFDM OFDM PER R-OFDM 4 θ(= θ 1 = θ 2) 0.4 π/4[rad.] 1% PER SNR PER 0.4 PER 18 R-OFDM OFDM 1% PER SNR 1.1 db 1.0 db SNR 0.5 db 19 PER AWGN (Additive White Gaussian Noise) MCS 16QAM 1/3 19 PER 19 SNR AWGN 18 R-OFDM PER RF Fig. 18 Measured PER performance of R-OFDM in lab. experiment. 19 PER RF Fig. 19 Measured PER performance of T2 decoder in lab. experiment. 0.8 db 0.7 db 0.1 db 18 R-OFDM PER 864

IMT-Advanced 1dB 16 db SNR 28 db 20 MIMO-OFDM F-DCH F-DCH 2.2 6 TU MIMO 3km/h 16QAM 64QAM 1/2 3/4 4 MCS MIMO 2 SCW (Single-Codeword) MIMO QR-MLD 20 64QAM 3/4 MCS 512.7 Mbit/s PER 6.3 % 547.2 Mbit/s 16QAM 3/4 64QAM 1/2 16QAM 64QAM SNR 364.8 Mbit/s 1Gbit/s 2 2MIMO 11/12 64QAM 6 [bit/hz/stream] 2 [stream] 11/12 = 11 [bit/s/hz] CP (4.7 μs/66.7 μs =0.07) 100 MHz 1Gbit/s 100 MHz 1Gbit/s MIMO 4 5. 3 YRP [17] 21 YRP 3 26.1 m 4 11.5 dbi EIRP 46.4 dbm 1 5.1 dbi 3.5 m 1.6 db 21 A D 30 km/h 1 A B 3 C D 2 B C 1 2 3 SNR/ 20 MIMO-OFDM F-DCH RF Fig. 20 Measured F-DCH throughput performance of MIMO-OFDM in lab. 21 Fig. 21 Field test course and photographs of BS and MS antennas. 865

2010/7 Vol. J93 B No. 7 22.3 db/0.60 μs 25.6 db/0.18 μs 15.9 db/0.43 μs 22 R-OFDM PER CDF 22 (a) 1 CDF 22 (b) 3 CDF MCS RF 3/4 QPSK PER 10 [m] 22 R-OFDM OFDM θ 0.0 R-OFDM 1 OFDM 1% PER 69 % R-OFDM θ 1.0 12 81 θ 0.2 76 % θ 0.4 79 % 3 1 θ =1.0 OFDM R-OFDM 22 R-OFDM PER CDF Fig. 22 CDF of measured R-OFDM PER in field test. θ 0.2 18 % θ 0.4 17 % 0.4 5.2 RF 6 TU [18] MCS 6. IMT-Advanced IMT-Advanced WRC07 IMT Advanced OFDMA MIMO LTE WiMAX IMT-Advanced ITU-R 2011 IPR KDDI [1] ITU-R, M.1645, Framework and overall objectives of the future development of IMT 2000 and systems beyond IMT 2000, June 2003. [2] 3GPP, TR 25.814 Ver. 7.1.0, Physical layer aspects for evolved UTRA (Release 7), Sept. 2006. [3] 3GPP2, C.S0084-001 Ver. 1.0, Physical layer for ultra mobile broadband (UMB) air interface specifica- 866

IMT-Advanced tion, April 2007. [4] Y. Kishiyama, N. Maeda, K. Higuchi, H. Atarashi, and M. Sawahashi, Experiments on throughput performance above 100-Mbps in forward link for VSF- OFCDM broadband wireless access, Proc. VTC 2003 Fall, vol.3, pp.1863 1868, Oct. 2003. [5] K. Higuchi, H. Kawai, N. Maeda, H. Taoka, and M. Sawahashi, Experiments on real-time 1-Gb/s packet transmission using MLD-based signal detection in MIMO-OFDM broadband radio access, IEEE J. Sel. Areas Commun., vol.24, no.6, pp.1141 1153, June 2006. [6] ITU-R, M.2134, Requirements related to technical performance for IMT-Advanced radio interface(s), Nov. 2008. [7] D. Garg and F. Adachi, Diversity-codingorthogonality trade-off for coded MC-CDMA with high level modulation, IEICE Trans. Commun., vol.e88-b, no.1, pp.76 83, Jan. 2005. [8] N. Miyazaki, Y. Hatakawa, T. Yamamoto, H. Ishikawa, T. Suzuki, and K. Takeuchi, A study on rotational OFDM transmission with multidimensional demodulator and twin turbo decoder, Proc. VTC 2006 Fall, TT-21 #3, Sept. 2006. [9] N. Miyazaki, Y. Hatakawa, T. Yamamoto, H. Ishikawa, and T. Suzuki, A study on likelihood estimation method taking account of mutual information in multi-level symbol A proposal of twin turbo decoder, Proc. PIMRC 2006, TH1 #3, Sept. 2006. [10] Y. Hatakawa, N. Miyazaki, and T. Suzuki, Performance evaluation of MIMO-OFDM with twin turbo decoder, IEICE Trans. Commun., vol.e92-b, no.1, pp.228 236, Jan. 2009. [11] K.J. Kim, J. Yue, R.A. Iltis, and J.D. Gibson, A QRD-M/Kalman filter-based detection and channel estimation algorithm for MIMO-OFDM systems, IEEE Trans. Wireless Commun., vol.4, no.2, pp.710 721, March 2005. [12] H. Kawai, K. Higuchi, N. Maeda, M. Sawahashi, T. Ito, Y. Kakura, A. Ushirokawa, and H. Seki, Likelihood function for QRM-MLD suitable for softdecision turbo decoding and its performance for OFCDM MIMO multiplexing in multipath fading channel, IEICE Trans. Commun., vol.e88-b, no.1, pp.47 57, Jan. 2005. [13] A. van Zelst, R. van Nee, and G.A. Awater, Space division multiplexing (SDM) for OFDM systems, Proc. VTC 2000 Spring, pp.1070 1074, May 2000. [14] X. Zhu and R.D. Murch, Performance analysis of maximum likelihood detection in a MIMO antenna system, IEEE Trans. Commun., vol.50, no.2, pp.187 191, Feb. 2002. [15] 3GPP, TS 45.005 Ver. 7.9.0, Radio transmission and reception (Release 7), Feb. 2007. [16] 3GPP2, C.S0024 Ver. 4.0, CDMA2000 high rate packet data air interface specification, Oct. 2002. [17] http://www.yrp.co.jp/en/index.html [18] 3GPP, R1-061460, Text proposal for enhanced modulation scheme for OFDMA, May 2006. [19] N. Miyazaki, T. Komine, Y. Hatakawa, and T. Suzuki, Development and experiments of 100MHz bandwidth testbed for IMT-advanced systems, Proc. VTC 2007 Fall, 5P #13, Sept. 2007. [20] N. Miyazaki, Y. Hatakawa, and T. Suzuki, Implementation and experimental results of rotational OFDM transmission Rotational OFDM performance with turbo decoder, Proc. VTC 2008 Fall, 5C-2 #2, Sept. 2008. [21] N. Miyazaki, T. Matsumoto, Y. Hatakawa, S. Konishi, and T. Suzuki, Field experiment results for rotational OFDM transmission implemented on 100MHz bandwidth testbed toward IMT-advanced system, Proc. VTC 2009 Fall, 3C #2, Sept. 2009. 21 12 21 22 2 17 62 KDDI 91 KDD KDDI KDDI 17 17 12 14 KDDI 21 5 KDDI 7 KDDI KDDI 18 12 IEEE 867