DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118

Similar documents
1 2 Octave/MATLAB Dynare Dynare Octave/MATLAB 1.1 Dynare Dynare Dynare DSGE 3 4 Dynare Octave MAT- LAB Dynare stable release

Part. 4. () 4.. () Part ,

第85 回日本感染症学会総会学術集会後抄録(I)

チュートリアル:ノンパラメトリックベイズ

untitled


●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb


プログラム


基礎数学I

I [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X X n ): µ X N(µ, σ 2 /n) Z = X µ σ/ n N(, 1) < α < 1/2 Φ(z) =.5 α z α

日本内科学会雑誌第97巻第3号

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

第85 回日本感染症学会総会学術集会後抄録(III)


Ł\”ƒ-2005

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

-34-

(CFW ) CFW 1

" " " " "!!

A A. ω ν = ω/π E = hω. E

( ) ( ) ( ) ( ) PID

24.15章.微分方程式

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January

46 Y Y Y Y 3.1 R Y Figures mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y Y Figure 5-

受賞講演要旨2012cs3

一般演題(ポスター)

untitled

higp-15(プロ1日目)/ky220147284100029951

日阪_NVAC0407.qxd


z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

日本内科学会雑誌第98巻第3号

第52回日本生殖医学会総会・学術講演会

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2


yakuri06023‡Ì…R…s†[

2301/1     目次・広告

a. How to start: b. How to continue: c. How to stop: b EAP 2. EAP EAP (expected a posteriori) (posteriori distribution) (θ) MAP (maximum a posteriori)

A B C D E F G H J K L M 1A : 45 1A : 00 1A : 15 1A : 30 1A : 45 1A : 00 1B1030 1B1045 1C1030

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p


プログラム

1 1 ( ) ( % mm % A B A B A 1

jigp60-★WEB用★/ky494773452500058730

プログラム


日本内科学会雑誌第102巻第12号

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


本文27/A(CD-ROM

パーキンソン病治療ガイドライン2002

27巻3号/FUJSYU03‐107(プログラム)

第101回 日本美容外科学会誌/nbgkp‐01(大扉)

tnbp59-20_Web:P1/ky108679509610002943



本文/報告2

(Frequecy Tabulatios)

!!!!!

z.prn(Gray)

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

ボールねじ

改訂版 :基本的な文字化の原則(Basic Transcription System for Japanese: BTSJ)

DiMAGE Scan Multi PRO

PowerPoint プレゼンテーション

DGE DGE (1) ( 1

example2_time.eps

★分冊3-説明資料PDF用/02-PDF個別

™ƒŒì„³001†`028.pwd

†ı25”Y„o-PDF.ren

76

' % % &! #



康乘聡子(P105‐121)/康乘聡子 p105‐121

‡Æ‡Ý‡©457_01-12

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

「数列の和としての積分 入門」

1 1 2 GDP 3 1 GDP 2 GDP 3 GDP GDP GDP 4 GDP GDP GDP 1 GDP 2 CPI 2

1. :. ( ) etc. etc.


2 probably 3 probability theory probability theory (gàil`ü) , 1:

tnbp59-17_Web:プO1/ky079888509610003201

4

ばらつき抑制のための確率最適制御

確率論と統計学の資料

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU SPring

パンフレット_一般用_完成分のコピー

S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T,

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)


 

第6回ストックリーグ入賞レポート 敢闘賞・大学 (PDF)

特許侵害訴訟における無効の主張を認めた判決─半導体装置事件−

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(21.5%) ( %) ( %)

Lecture on

Transcription:

7 DSGE 2013 3 7 1 118 1.1............................ 118 1.2................................... 123 1.3.............................. 125 1.4..................... 127 1.5...................... 128 1.6.............. 130 2 MCMC 131 2.1.............................. 132 2.2............................... 132 2.3 M-H......... 134 2.4 MCMC.......................... 136 3 DSGE 137 3.1.............................. 138 3.2............................ 138 3.3 DSGE.............. 140 4 142 4.1......................... 142 4.2............................. 145 117

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118

3. 4. 5. A P (A) [0, 1] A P (A) P (A) = A A A A P (A ) P (A ) = 365 A A 1 = 1 = 0 P (A ) 1 0 [0, 1] 0.3 (1) P (A) A P (1) P (B A) = P (A B) P (A) (2) 119

(2) P (A B) A B A P (A) P (B A) A B A B A {,,, } B {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}. P ({ } {1}) 1/52 P ({1} { }) 1/13 (2) P ({1} { }) = P ({ } {1}) P ({ }) = 1 52 1 4 = 1 13 (3) (2) A B P (A B) = P (A B) P (B) (4) P (A B) = P (B A)P (A) (2) P (A B) = P (B A)P (A) P (B) (5) (5) 1.4 *1 ω ω 0 < ω < 1 ω = 0, 1 *1 1 120

ω 0 1 0 1 4. E P 1 ω 1 2 ω 2 Ω = {ω 1, ω 2,..., ω 52 } 1 E 1 = {ω 1 } 1 1 1 1 E 2 = {ω 1, ω 14, ω 27, ω 40 } E 3 = {ω 1, ω 2,..., ω 13 } 2 P P P (Ω) = 1 1/52 P (E 1 ) = 1/52 P (E 2 ) = 4/52 = 1/13 P (E 3 ) = 13/52 = 1/4 1 121

"! #! $! %! & ' ( ) * +, ++ +-! +.! / "!/ #! 0!! / &#! 1 Ω ω i! )*+,-./01 23!"#$%& 4 (1!"#$%&'!"#$%& ' ( 2 2 2 Ω F *2 Ω F (Ω, F, P ) P P : F [0, 1] (Ω, F, P ) X Ω R X : Ω R P P (E) X X(ω) 1 y a *2 122

ay 2ay 3ay 4ay 4. 5. 1.4 1.2 p(x) X(ω) X(ω) z X(ω) z E X z P (E X z ) = z p(x)dx (6) *3 R B P 1 3 *4 *3 *4 P 0 θ 1 P (x = k; θ) = θ k (1 θ) 1 k, k 0, 1 (7) 0 θ 1 P (x = k; θ) = n! = n i=1 i n! k!(n k)! θk (1 θ) n k, k = 0, 1, 2,..., n (8) 123

p(x) N(µ, σ 2 ) < X < Ga(a, s) X 0 Be(a, b) 0 X 1 Unif(a, b) a X b, a, b R 1 2πσ 2 exp ( (x µ)2 1 σ 2 ) µ σ 2 s a Γ(a) xa 1 exp( x ) as as2 s Γ(a+b) Γ(a)Γ(b) xa 1 (1 x) b 1 a ab a+b 1 b a b a 2 (a+b) 2 (a+b+1) (b a) 2 12 1 Γ( ) 0.0 0.1 0.2 0.3 0.4 N(µ = 0, σ 2 = 1 ) 0.0 0.2 0.4 0.6 0.8 1.0 Ga(s = 1, a = 1 ) 0.0 0.5 1.0 1.5 4 2 0 2 4 Be(a = 2, b = 2 ) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 Unif(a = 1, b = 1 ) 1.0 0.5 0.0 0.5 1.0 3 p(x) X E(X) = xp(x)dx (9) µ Var(X) = (x µ) 2 p(x)dx (10) X σ 2 P ({ X µ kσ}) 1 k 2, k > 1 (11) 124

1.3 p(a, b) A, B A B p(b a) p(a b) = p(a, b) p(a) (12) p(a) A p(a) = p(a, b)db p(a b) = p(b a)p(a) p(b) (13) *5 (13) *5 p(a) p(b) p A (a) p B (b) p(a b) p(b a) 125

1. (13) p(a b) a y b θ p y θ (y θ) 2. p θ (θ) (13) p(b) 3. y obs p y θ (y θ) y p y θ (y θ) l(θ; y obs ) 4. p θ y (θ y obs ) p θ y (θ y obs ) = l(θ; yobs )p θ (θ) p y (y obs ) (14) p y (y obs ) θ p y (y obs ) = l(θ; y obs )p(θ)dθ θ p θ y (θ y obs ) l(θ; y obs )p(θ) (15) 5. p θ y (θ y obs ) 5. θ θp θ y(θ y obs )dθ MCMC 2 p y (y obs ) y obs 1.5 *6 θ < θ < 0 < θ < 0 θ 1 a θ b *6 126

*7 DSGE *8 2 p y θ (y θ) 1.4 DSGE 3 DSGE 3 1.4 *9 N 1 0 0 1 k = {k i } N i=1, k i {0, 1} *7 *8 Jeffreys Jeffreys improper ( ) *9 127

θ N f(θ; k) = θ k i (1 θ) 1 k i (16) i=1 θ [0, 1] Be(a, b) π(θ) θ a 1 (1 θ) b 1 (17) a, b * 10 π(θ k) θ K+a 1 (1 θ) N K+b 1, K = k i (18) θ Be(K + a, N K + b) 2.1 N 4 θ 1 θ = 0.6 a, b a = 2, b = 2 4 0.5 N = 5, 20, 100, 500 N N N θ N θ 2 MCMC 1.5 p y (y obs ) y obs m *10 Be(a, b) a a+b ab (a+b) 2 (a+b+1) 128

N = 5 N = 20 0 2 4 6 8 10 0 1 2 3 4 5 0 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 1.0 N = 100 0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20 25 30 0.0 0.2 0.4 0.6 0.8 1.0 N = 1000 0.0 0.2 0.4 0.6 0.8 1.0 4 θ M 1, M 2,..., M m M i θ i (14) M i M i θ i p(θ i y, M i ) = p(y θ i, M i )p(θ i M i ) p(y M i ) (19) * 11 M i y (13) a y b M i M i p(m i y) = p(y M i)p(m i ) p(y) (21) p(y M i ) (19) M i p(m i ) *11 p(b a, c) = p(a b, c)p(b c) p(a c) (20) 129

* 12 p(y) p(y) = m p(y M i )p(m i ) (22) i=1 i j p(m i y) p(m j y) p(m i y) p(m j y) = p(y M i)p(m i ) p(y M j )p(m j ) (23) *12 p(m i ) = p(m j ) = 1/m p(m i y) p(m j y) = p(y M i) p(y M j ) (24) p(y M i )/p(y M j ) * 13 p(y M i ) Bayesian Econometrics Koop[2003] 1.6 * 14 GMM AIC BIC * 15 *12 p(m i ) = 1/m *13 2 ln (p(y M i )) BIC *14 *15 MCMC Geweke 2.4 130

* 16 MCMC * 17 2 MCMC Markov Chain Monte Carlo MCMC 1 MCMC MCMC 2 DSGE MCMC *16 *17 DSGE-VAR 131

M-H 2.1 * 18 [0, 1] * 19 R 2.2 1.4 1 0 i k i (k i {0, 1}) k i {k 1, k 2,... } W t {, } 0.9 0.1 0.5 0.5 {W 1, W 2,... } [ ] 0.9 0.5 Q = 0.1 0.5 (25) π + π = 1 [ ] [ ] [ ] 0.9 0.5 π π = 0.1 0.5 π π (26) π = 5/6, π = 1/6 *18 *19 M-H 132

a t 4 2 0 2 4 0 50 100 150 200 5 AR(1) AR(1) ε t σ 2 1 < ρ < 1 a t a 0 = ā a t+1 = ρa t + ε t+1 (27) a 0 = ā T a t, t T (27) AR(1) a t ( σ 2 ) N 0, 1 ρ 2 q(a t, a t+1 ) N(ρa t, σ 2 ) MCMC 5 σ 2 = 1, ρ = 0.5 0, 100, 100 3 a t N(0, 4/3) (28) 133

2.3 M-H MCMC AR(1) MCMC MCMC MCMC 1 M-H Metropolis-Hastings * 20 M-H q f(θ) * 21 M-H θ (0) i i 1 step 1. θ q(θ (i 1), θ) step 2. { } α(θ (i 1), θ) f( θ)q( θ, θ (i 1) ) = min f(θ (i 1) )q(θ (i 1), θ), 1 (29) step 3. α(θ (i 1), θ) θ θ (i) = θ θ θ (i) = θ (i 1) f(θ) M-H q(ϕ, θ) = q(θ, ϕ) q *20 MCMC M-H *21 q step 1. M-H 134

α(θ (i 1), θ) { } α(θ (i 1), θ) f( θ) = min f(θ (i 1) ), 1 (30) random walk chain * 22 θ M-H θ 0.2 0.5 * 23 q random walk f(θ) θ θ (0) i i 1 step 1. θ θ (i 1) + ϵ, ϵ N(0, σ 2 ) step 2. { } α(θ (i 1), θ) f( θ) = min f(θ (i 1) ), 1 (31) step 3. α(θ (i 1), θ) θ θ (i) = θ θ θ (i) = θ (i 1) M-H Ga(s = 5, a = 1) * 24 σ 2 0.1, 20, 5000 3 1,200 200 1,000 6 *24 Ga(s = 5, r = 1) *22 Metropolis M-H *23 Bayesian Econometrics Koop[2003] 98 *24 135

step 3. 0.944, 0.492, 0.045 6 3 σ 2 = 20 Ga(s = 5, r = 1) σ 2 f Ga(s, r) s/r 2 σ 2 = 5 σ 2 σ σ σ 6 θ step 1. MN(0, Σ) 3.3 DSGE 2.4 MCMC MCMC 136

6 5 Geweke 10% 50% θ A, θ B Z = θ A θ B Sθ A(0)/N A + Sθ B(0)/N B (32) 1 * 25 t Z 2 * 26 Z 2 10% 50% 3 DSGE 2 DSGE VAR η t [ˆxt+1 ŝ t+1 ] ] [ˆxt = D + Rη t+1 (33) ŝ t MCMC 3.2 *25 x t, t = 1, 2,..., N x t Var(x t )/N Var(x t ) x t MCMC x t x t x t S x (0)/N S x (0) x t 0 *26 137

3.1 t = 1, 2,... y t = Zα t + ϵ t, ϵ t MN m (0, H), (34) α t+1 = Dα t + Rη t+1, η t MN r (0, Q), (35) α 1 MN r (a 1, P 1 ) (36) * 27 (34) y t m α t r Z (m, r) y t α t (35) D, R (r, r) * 28 ϵ t, η t α 1 y t, α t 3.2 ϑ = {Z, H, D, R, Q, a 1, P 1 } Y T = {y i } T i=1 p(y T ) = p(y 1, y 2,..., y T ) = p(y T Y T 1 )p(y T 1 Y T 2 ) p(y 2 y 1 )p(y 1 ) (37) ϑ p(y T ) p y ϑ (y ϑ) p(y t Y t 1 ) E(y t Y t 1 ) Var(y t Y t 1 ) Y T = Y obs T l(ϑ; YT obs) * 29 2 *30 *27 *28 (36) *36 α 1 α 1 a 1, P 1 *29 138

a t = E(α t Y t 1 ), P t = Var(α t Y t 1 ) a t+1 = E(α t+1 Y t ) = DE(α t Y t ) (38) P t+1 = Var(α t+1 Y t ) = DVar(α t Y t )D + RQR (39) ν t = y t E(y t Y t 1 ) = y t Za t (40) F t = Var(y t Y t 1 ) = Var(ν t Y t 1 ) (41) M t = Cov(α t, ν t Y t 1 ) (42) M t α t ν t [ ] ([ ] [ ]) αt at Pt M Y t 1 MN r+m, t 0 ν t M t F t {ν t, Y t 1 } Y t (43) E(α t Y t ) = E(α t ν t, Y t 1 ) = a t + M t F 1 t ν t (44) Var(α t Y t ) = Var(α t ν t, Y t 1 ) = P t M t F 1 t M t (45) M t = E ( (α t a t )νt ) Y t 1 = E ( (α t a t )(y t Za t ) ) Y t 1 = E ( (α t a t )(Zα t + ϵ t Za t ) ) Y t 1 = E ( (α t a t )(α t a t ) Z ) Y t 1 = P t Z F t = Var(Zα t + ϵ t Za t Y t 1 ) = Var(Zα t + ϵ t Y t 1 ) = ZP t Z + H (46) (47) α t ϵ t a t, P t t = 1, 2,... T a 1, P 1 ν t = y t Za t F t = ZP t Z + H K t = DP t Z Ft 1 L t = D K t Z a t+1 = Da t + K t ν t (48) (49) (50) (51) (52) P t+1 = DP t L t + RQR (53) 139

E(y t Y t 1 ) = Za t, Var(y t Y t 1 ) = F t = ZP t Z + H Y T = YT obs ϑ l(ϑ; YT obs) k y MN(µ, Σ) y, µ, Σ y = µ = Σ = [ y(1) y (2) ] [ µ(1) µ (2) ] [ ] Σ(11) Σ (12) Σ (21) Σ (22) (54) (55) (56) y (1) k 1 y (2) k 2 k = k 1 + k 2 µ, Σ y (2) = y (2) y (1) MN(µ (1 2), Σ (1 2) ) µ (1 2) = µ (1) + Σ (12) Σ 1 (22) (y (2) µ (2)) (57) Σ (1 2) = Σ (11) Σ (12) Σ 1 (22) Σ (12) (58) * 30 3.3 DSGE DSGE DSGE VAR Y T = Y obs T ] [ˆxt α t = ŝ t Z H (33) D Q R θ H(θ), D(θ), Q(θ), R(θ) (59) *30 MN(µ, Σ) p(y) exp [ 1 2 (y µ) Σ(y µ) ] 140

2.3 θ p θ (θ) y t = Zα t + ϵ t, ϵ t MN m (0, H(θ)), α t+1 = D(θ)α t + R(θ)η t+1, η t MN r (0, Q(θ)), α 1 MN r (a 1, P 1 ) (60) l(θ; Y T ) (31) f(θ) l(θ; Y T )p θ (θ) θ p θ y (θ Y T ) l(θ; Y T )p θ (θ) θ DSGE θ (0) i i 1 step 1. θ MN(θ (i 1), Σ) step 2. Blanchard and Kahn D(θ), R(θ) step 3. l( θ; YT obs) step 4. p θ ( θ) [ ] l( p = min θ;y)p θ ( θ) l(θ (i 1) ;y)p θ (θ (i 1) ), 1 step 5. p θ θ (i) = θ θ θ (i) = θ (i 1) step. 1 Σ 2.4 Blanchard and Kahn R(θ) Sims R θ 141

4 5 1980 1999 4.1 6 π t = βπ t+1 + κˆx t (61) ˆx t = ˆx t+1 (î t π t+1 ) + ν t (62) î t = ϕ π π t + ϕ y ˆx t + v t (63) v t+1 = ρ v v t + u t+1 (64) â t+1 = ρ A â t + ε t+1 (65) ν t = â t+1 â t (66) * 31 (65) (66) ν t = â t+1 â t = (ρ A 1)â t + ε t+1 t t + 1 (62) ν t (ρ A 1)â t ϕ π > 1, ϕ y > 0 ϕ π ϕ π = ϕ π 1 β β = 0.99 5 π t = βπ t+1 + κˆx t (67) ˆx t = ˆx t+1 (î t π t+1 ) + (ρ A 1)â t (68) î t = (1 + ϕ π )π t + ϕ y ˆx t + v t (69) v t+1 = ρ v v t + u t+1 (70) â t+1 = ρ A â t + ε t+1 (71) u t, ε t σ u, σ ε θ = *31 κ = (1 ω)(1 ωβ)(γ+1) ω 142

{γ, ω, ϕ π, ϕ y, ρ A, ρ v, σ u, σ ε } * 32 ˆx t π t α t = î t v t, η t = â t [ ut ε t 0 0 ] 0 0, R = 0 0 1 0 0 1 (72) θ Blanchard and Kahn α t+1 = D(θ )α t + Rη t+1, η t MN(0, Q(θ )) (73) GDP GDP 3 7 x obs t, πt obs, i obs t 1980 2 1999 1 76 * 33 x obs t x obs = ˆx t (74) π obs t π obs = π t + ϵ π,t (75) (i obs t ī obs )/4 = î t * 34 x obs, π obs, ī obs ϵ π,t 3 3 1 ϵ π,t θ = {γ, ω, ϕ π, ϕ y, ρ A, ρ v, σ u, σ ε, σ ϵπ } (76) 1/4 (76) *32 *33 OECD Economic Outlook No. 90 *34 (60) Z Z = 1 0 0 0 0 0 1 0 0 0 (77) 0 0 1 0 0 143

7 θ 2 * 35 γ ϕ π, ϕ y ω 0 < ω < 1 *35 µ η 144

γ 1.0 0.5 ω 0.8 0.1 ϕ π 0.5 0.25 ϕ y 0.5 0.25 GDP ρ A 0.8 0.05 AR(1) ρ v 0.8 0.1 AR(1) σ ε 0.5 0.5 ε t σ u 0.5 0.5 u t σ ϵπ 0.5 0.5 ϵ π,t 2 AR(1) 1 σ ε, σ u, σ ϵπ * 36 4.2 3.3 2 125,000 25,000 200,000 M-H 0.304, 0.306 Geweke 3 Z 1, Z 2 1 2 Geweke 1 Z 2 Z γ *36 Dynare 4.3.1 Dynare Octave MATLAB DSGE Dynare Blanchard and Kahn (73) Dynare VAR 145

Z 1 Z 2 γ 2.271 0.511 2.509 1.004 ω 0.348 0.091 0.222 0.369 ϕ π 0.430 0.037 0.195 0.834 ϕ y 0.875 0.455 3.268 0.043 ρ A 0.926 0.013 3.648 0.344 ρ v 0.394 0.191 0.776 0.391 σ u 0.229 0.095 0.679 0.452 σ ε 0.958 0.010 0.411-0.381 σ ϵπ 0.879 0.016 0.186 0.415 3 Geweke ω ϕ π GDP ϕ y GDP AR(1) ρ A ρ v (73) t 1 α t = D t 1 α 1 + D t i 1 Rη i+1 (78) i=1 θ α t α 1 η t y t = Zα t + ϵ t y t α 1 η t ϵ t (74) (76) 8 * 37 GDP 90 97 GDP GDP *37 θ (i) 146

6 4 2 $%& '()*+,"-./+,"- GDP!"# GDP!"# % 0 2 4 6 1980 81 82 83 84 85 86 87 88 89 1990 91 92 93 94 95 96 97 98 99+ % % 3 2.5 2 1.5 1 0.5 0 0.5 1 GDP!"#!"!#$%&'()* +%, -./0 12345678!"#$% GDP&'()*) 1.5 198081 82 83 84 85 86 87 88 89 1990 91 92 93 94 95 96 97 98 99 2.5 2 1.5 1 0.5 0 0.5 1!"# $!% "&'()*+, -.)*+,!"# 1.5 1980 81 82 83 84 85 86 87 88 89 1990 91 92 93 94 95 96 97 98 99$ 8 80 147