168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad



Similar documents
A. Fresnel) (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) (G. Galilei)

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a πk 1 ɛ 0 ɛ 0 (perm

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J

24.15章.微分方程式

i I

Untitled

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,


1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n


18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

2 p T, Q

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

ii 4 5 RLC 2 LC LC OTA, FDNR 6

4

96 7 1m = N 1A a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

基礎数学I

Part. 4. () 4.. () Part ,




x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

esba.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU SPring

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


untitled

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

i

(C) Kazutaka Takahashi 2018

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux EP

. p.1/14

i ( ) PDF I +α II II III A: IV B: V C: III V I, II III IV V III IV krmt@sci.u-toyama.ac.jp

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

pdf

チュートリアル:ノンパラメトリックベイズ

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

A A. ω ν = ω/π E = hω. E

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv

KENZOU

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

DocuPrint C2424 取扱説明書(詳細編)

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

振動と波動

本文/020:デジタルデータ P78‐97

phs.dvi

/Volumes/NO NAME/gakujututosho/chap1.tex i

example2_time.eps

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.


II 2 II

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

I ( ) 2019

Xray.dvi

h = h/2π 3 V (x) E ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 関 数 値

IA

4‐E ) キュリー温度を利用した消磁:熱消磁

b3e2003.dvi

I 1

アナログ・デジタルの仕様とパフォーマンス特性の用語集



A

0302TH0130.indd

第 章 交流回路素子とその性質 抵抗 コイル コンデンサ it) it) dit) vt) = L vt) = 1 it) 図. コイル インダクタ) [] 図.3 コンデンサ キャパシタ) [3] はインダクタである コイルの両端に印加された電圧 費電力が負である とは 電力がその回路素子から供給

Gmech08.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

hirameki_09.dvi

/Volumes/NO NAME/gakujututosho/chap1.tex i

08-Note2-web

II 2 ( )

日本内科学会雑誌第101巻第12号

(a) (b) 1: (a) ( ) (b) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) 2 2

1


1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

Lecture on

REALV5_A4…p_Ł\1_4A_OCF

untitled

「都市から地方への人材誘致・移住促進に関する調査」

<91498EE88CA D815B2E786C73>

〔 大 会 役 員 〕

橡本体資料+参考条文.PDF

IV.dvi

Transcription:

13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H = B/µ C S 167

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Faraday B B E ds = ds (13.9) L S rot E = B (13.10) (1) (2) ρ j (3) (4) D = ε E (13.11) B = µ H (13.12) j = σ E. (13.13) ε µ σ

13.2 169 13.2 Ampère Maxwell Maxwell Maxwell Hertz 1888 Maxwell 13.2.1 ρ =0 j =0 E B Maxwell div E = 0 (13.14) div B = 0 (13.15) rot E = B (13.16) rot B = ε 0 µ 0 B. (13.17) x y z E(x, t) B(x, t) (13.14) (13.15) E x =0, B x = 0 (13.18) (13.16) (13.17) 0= B x, E z = B y, E y = B z (13.19) 0= E x, B z = ε 0µ 0 E y, B y = ε 0µ 0 E z. (13.20) x (13.18)(13.19) (13.20) E x = E x =0, B x = B x =0

170 13 Maxwell E x B x x t E x = B x = 0 (13.21) y z (13.19) (13.20) B y E z 2 E z 2 = 1 2 E z ε 0 µ 0 2 2 B y 2 = 1 ε 0 µ 0 2 B y 2 (13.22) (13.19) (13.20) B z E y 2 E y 2 = 1 2 E y 2 B ε 0 µ 0 2 z 2 = 1 2 B z ε 0 µ 0 2 (13.23) x E z E z (x, t) =f(x vt)+g(x + vt) (13.24) f g f(x vt) x v g(x + vt) x v (13.24) (13.19) s = x vt s = x + vt E z x E z = f + g = f s s + g s s = f s + g s B y t B y = f s + g s B y f(x vt) g(x + vt) a b B y = af(x vt)+bg(x + vt). B y = a f + b g = a f s s + b g s s = av f g + bv s s a = 1 v, b = 1 v

13.2 171 B y B y = 1 [ f(x vt) g(x + vt)] v E z B y E z = f(x vt)+g(x + vt) B y = 1 (13.25) v [ f(x vt) g(x + vt)] f g v x electromagnetic wave E z B y x E x B x z y x z E z > 0 y B y < 0 13.1 x y E y = E 0 sin(kx ωt) (1) k ω (2) E =(0,E 0 sin(kx ωt), 0). (1) 2 E y 2 = 1 2 E y ε 0 µ 0 2 = c 2 2 E y 2 = ( ω) 2 E 0 sin(kx ωt), = c 2 k 2 E 0 sin(kx ωt) c ω 2 = c 2 k 2 c = ω k

172 13 Maxwell (2) x B x =0 z E y = B z E y B z = E y = ke 0 cos(kx ωt) B z = k ω E 0 sin(kx ωt) = 1 c E 0 sin(kx ωt) 0 z H =(0, 0, H z ) H z = H 0 sin(kx ωt), H 0 = 1 µ 0 c E 0 = ε0 µ 0 E 0 13.1 x y z 13.1: x 13.2 E Faraday rot ( rot E )= ( ) rot B

13.2 173 div E = ρ/ε 0 rot ( rot E ) = grad ( div E ) 2 E = 1 ε 0 grad ρ 2 E, D rot B = µ 0 j + µ 0, D = ε 0 E ( ) j rot B = µ 0 ε 0 µ 2 E 0 2 ρ =0 j =0 ε 0 µ 0 =1/c 2 ( ) 1 2 E c 2 2 = 2 2 E = 2 + 2 y 2 + 2 z 2 E 13.2.2 (13.24) x t 2 ( E z 2 = v 2 2 ) f 2 + 2 g 1 2 E 2, z ε 0 µ 0 2 = 1 ( 2 ) f ε 0 µ 0 2 + 2 g 2, ε 0 µ 0 v = 1 ε0 µ 0 ε 0 = 107 4πc 2 [C N 1 m 2 ] µ 0 = 4π 10 7 [N A 2 ] v = 1 ε0 µ 0 = c Maxwell

174 13 Maxwell Hertz Newton Michelson- Morley 1887 Maxwell Einstein 1905 Maxwell Newton Einstein m 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 10 0 10 1 10 2 10 3 Hz 10 19 10 18 10 17 10 16 10 15 10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 10 6 10 5 Gamma rays X-rays Ultraviolet Visible light Infrared Millimeter waves, Telemetry Radar Microwaves FM radio Television Short waves radio AM radio 13.2:

13.2 175 13.2.3 S poynting vector S = E H (13.26) E H 13.1 x y E =(0,E y, 0), E y = E 0 sin(kx ωt), (13.27) z H =(0, 0, H z ), H z = H 0 sin(kx ωt). (13.28) H 0 = 1 µ 0 c E 0 = ε0 µ 0 E 0 (13.29) S = E H =(S x, 0, 0) x x S x = E 0 H 0 sin 2 (kx ωt). 2π t =0 x =0 x =2π/k 2π λ λ = 2π k. x t =0 x 0 λ λ S x S x = 1 λ λ 0 S x (x, t =0)dx = 1 2 E 0H 0 (13.30) x

176 13 Maxwell (13.28) (13.27) (13.30) 1 2 ε 0E 2 y = 1 4 ε 0E 2 0, 1 2 µ 0Hz 2 = 1 4 µ 0H0 2 (13.29) (13.30) 1 2 E 0H 0 = 1 2 ε 0E0 2 1 = c 1 ε0 µ 0 2 ε 0E0 2 S x = c ( 1 2 ε 0 E y 2 + 1 ) 2 µ 0 H z 2 x 13.2.4 x E x = B x =0 E 0 B 0 x E 0 E y (x, t) = E 0y sin(kx ωt + θ y ) θ y = θ z θ y = θ E z (x, t) = E 0z sin(kx ωt + θ z ) E(x, t) =E 0 sin(kx ωt + θ), E 0 =(0,E 0y,E 0z ) x t E 0 E 0 B 0 E 0y = E 0z = E 0 θ z = θ y + π/2 θ y = θ + π/2 E y (x, t) = E 0 cos(kx ωt + θ) = E 0 cos(ωt kx θ) E z (x, t) = E 0 sin(kx ωt + θ) = E 0 sin(ωt kx θ) x = kx + θ =0 x 0 = θ/k E y (x 0,t)=E 0 cos ωt, E z (x 0,t)=E 0 sin ωt

13.2 177 ω θ z = θ y π/2 θ y = θ + π/2 E y (x, t) = E 0 cos(kx ωt + θ) = E 0 cos(ωt kx θ) E z (x, t) = E 0 sin(kx ωt + θ) = E 0 sin(ωt kx θ) x = kx + θ =0 x 0 = θ/k E y (x 0,t)=E 0 cos ωt, E z (x 0,t)= E 0 sin ωt E y0 E z0 ( E y,e z )

178 13 Maxwell 13.3 Maxwell z (0, 0, L/2) q (0, 0, L/2) q I I>0 dq dt = I ω I(t) =I 0 cos ωt. z k j(r,t)=i(t) δ(x )δ(y ) k A(r,t)= µ 0 j(r,t r r /c) dr 4π r r = k µ L/2 0 I(t r z k /c) 4π L/2 r z dz k r = z k x y r r = r L r z k = r 2 2rz cos θ + z 2 r z cos θ θ r z I t r z k c t r z cos θ c I T =2π/ω z cos θ /c z cos θ < L c c T I t r/c λ L λ (13.31)

13.3 179 A(r,t) k µ 0 4π φ L/2 L/2 I(t r/c) r dz = k µ 0 L I(t r/c) (13.32) 4πr div A + 1 φ c 2 =0 Lorentz (13.32) φ c 2 µ 0 L 4π φ(r,t) c 2 µ 0 L 4π [ z z I(t r/c)+ r3 r 2 c I(t r/c) [ ] z z q(t r/c)+ r3 r 2 c I(t r/c) qω I λ/r φ(r,t) µ 0 I 0 czl 4π r 2 cos ω(t r/c) (13.33) (13.33) (13.32) ] 13.3 13.3 LC +Q 0 Q 0 t =0 L =20µH C =0.0020 µf L C 13.3: LC I(t) Kirchhoff L di dt V C =0

180 13 Maxwell ±Q(t) I(t) = dq(t), V dt C (t) = Q(t) C Q d 2 Q(t) dt 2 = Q(t) LC. a b t t Q(t) =a cos + b sin LC LC Q(t =0) = Q 0, a = Q 0 b =0 Q(t) =Q 0 cos I(t =0) = dq(t) dt t LC =0 t=0 Q(t) V C (t) E(t) D(t) V C (t) = Q(t) C, E(t) =V C (t), D(t) =ε d 0 E(t) d rot H = D ω = 1 LC c λ c λ = ω/(2π) LC = (20 10 6 ) (0.0020 10 6 )=2.0 10 7 [s] λ =(3.0 10 8 ) 2π (2.0 10 7 )=3.8 10 2 [m]