0 17 l l Grothendieck Weil Grothendieck SGA (Séminaire de Géométrie Algébrique du Bois-Marie) [Del2], [Del3] Grothendieck Weil Ramanujan Deligne [Del1

Similar documents
Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

非可換Lubin-Tate理論の一般化に向けて

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1

1. Γ, R 2,, M R. M R. M M Map(M, M) 3, Aut R (M). ρ : Γ Aut R (M) Γ. M R n, R, R ρ : Γ Aut R (M) GL n (R) := {g M n (R) det(g) R } 4. ρ Γ R R M.,,.,,

日本数学会・2011年度年会(早稲田大学)・総合講演

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

q n/2 X H n (X Fq,et, Q l) Frobenius q 1/2 (Deligne, [D5]) X (I) (II) X κ open (proper )smooth X κ proper strictly semi-stable weight filtration cohom

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8)

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib


newmain.dvi

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17

main.dvi

16 B


i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

wiles05.dvi

Langlands 1 1. Langlands p GL n Langlands [HT] The local Langlands conjecture is one of those hydra-like conjectures which seems to grow as it gets pr

meiji_resume_1.PDF


2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

kb-HP.dvi

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

等質空間の幾何学入門

TOP URL 1

2011de.dvi

, = = 7 6 = 42, =

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

D 24 D D D

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

Morse ( ) 2014


17 Θ Hodge Θ Hodge Kummer Hodge Hodge

( ) ( ) (B) ( , )


S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

73

( ) (, ) ( )


untitled

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1


コホモロジー的AGT対応とK群類似

Note.tex 2008/09/19( )


A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

xia2.dvi

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,


構造と連続体の力学基礎

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹

Dynkin Serre Weyl

2

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


On a branched Zp-cover of Q-homology 3-spheres

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

基礎数学I

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Twist knot orbifold Chern-Simons

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Transcription:

l 0 2 1 4 1.1 Tate.......................... 4 1.2........................ 6 1.3...................... 9 1.4.................... 21 2 Galois 31 2.1 Galois.......... 31 2.2.................... 31 3 Galois 35 3.1 Weil-Deligne............................ 37 3.2 Rψ............................ 43 3.3............................. 44 3.4............................ 52 3.5............................ 58 3.6...................... 63 1

0 17 l l Grothendieck Weil Grothendieck SGA (Séminaire de Géométrie Algébrique du Bois-Marie) [Del2], [Del3] Grothendieck Weil Ramanujan Deligne [Del1] Deligne 2 l l Weil q Eichler Deligne Langlands Galois GL n Langlands F GL n (A F ) Gal(F /F ) n l Π l Galois ρ(π) Galois Sato-Tate Galois Galois [DS] [DS] Galois Galois Galois Chevalley Deligne-Lusztig Kazhdan-Lusztig 2

SGA ([SGA4], [SGA5], [SGA7], [SGA4 1 2 ]) [SGA4 1 2, Arcata] 70 Galois Galois Galois SGA Galois 3.3 SGA 1 6 SGA, [Del3], [BBD] [KW] k F K F, K O F, O K k k Galois Gal(k/k) G k G k l Q l Q l V ρ: G k GL(V ) V l G k l Z l Z l Λ ρ: G k Aut(Λ) Z l Q l Z l G X x X Stab G (x) := {g G gx = x} G G Spec A X A B X Spec A Spec B X A B X B 3

1 1.1 Tate Tate k 1.1 E k n 1 E[n] = {x E(k) nx = 0} l T l E = lim n E[l n ], V l E = T l E Zl Q l T l E E l Tate V l E E l Tate l k T l E 2 Z l [Sil] V l E 2 Q l l k T l E, V l E l k T l E, V l E Galois G k ρ G k 2 l G k Aut Ql (V l E) l G k Aut Zl (T l E) l E 1.2 ρ E E L = (End k E) Z Q Q k 0 (End k E) Z Q Q E L V l E ι: L End Ql V l E L G k ρ: G k Aut Ql (V l E) Im ι {g Aut Ql (V l E) gι(a)g 1 = ι(a) ( a L)} (L Q Q l ) Aut Ql (V l E) E Im ρ E V l E k G k l k E Im ρ Aut Ql (V l E) Zariski ([Ser1]) 4

1.3 k p > 0 E k E[p] = 0 D = (End k E) Z Q Q V l E D p Im ρ Aut Ql (V l E) 1.4 k = K ρ E 1.5 i) E ρ ii) E ρ I K σ I K ρ(σ) 1 Tate 1 C E C Z Λ E(C) = C/Λ ([Sil]) H 1 ( E(C), Z ) = Λ, H 1 ( E(C), Q ) = Λ Z Q, Tl E = lim n Λ/l n Λ = Λ Z Z l, V l E = Λ Z Q l T l E V l E E(C) 1 l V l E i 0 k G k l ; X H i (X k, Q l ) i l k = C H i (X k, Q l ) X(C) Betti H i (X(C), Q) l H i (X(C), Q) Q Q l k C H i (X k, Q l ) Betti k Galois H i (X k, Q l ) X 5

H i k E l H 0 (E k, Q l ) = Q l, H 1 (E k, Q l ) = (V l E), H 2 (E k, Q l ) = Q l ( 1), H i (E k, Q l ) = 0 (i 3) k C C Betti 1 1.2 2 X X Shv X 3 X Γ(X, ): Shv X Ab Ab X F 0 F I 0 I 1 0 Γ(X, I 0 ) Γ(X, I 1 ) i X F i H i (X, F) F Z Q H i (X, Z) Q H i (X, Q) X X H i (X, Z) H i (X, Q) Betti Betti Zariski X X X Z 1 k A 1 k P1 k 1 H i (E, O E) 0 1 1 2 0 2 [KS] [Ive] 3 6

A 1 C P1 C Betti Zariski X Open X X V, U X V U V U V U X Open X Ab U Open X (U i U) i I Open X U i U (U i ) i I U 0 F(U) i I F(U i ) ( ) i,j I F(U i U j ) ( ) (x i ) i I (x i Ui U j x j Ui U j ) i,j I U i U j Open X U i U U j (U i ) i I U Open X (U i U) i I LIsom X 1.6 f : Y X y Y y V, f(y) X U f V U LIsom X f : Y X Y f : Y X f : Y X g : Y Y f g = f LIsom X (g i : Y i Y ) i I Y, Y i LIsom X Y = i I g(y i) (site) 4 4 (pretopology) 7

LIsom X 1.7 LIsom X F : LIsom X Ab LIsom X (Y i Y ) i I 0 F(Y ) i I F(Y i ) ( ) i,j I F(Y i Y Y j ) pr 1 : Y i Y Y j Y i p i,j : F(Y i ) F(Y i Y Y j ) pr 2 : Y i Y Y j Y j q i,j : F(Y j ) F(Y i Y Y j ) ( ) (x i ) i I (p i,j (x i ) q i,j (x j )) i,j I Y i Y Y j LIsom X LIsom X F LIsom X Y F(Y ) Γ(Y, F) LIsom X Shv LIsom X Shv X Shv LIsom X 1.8 X F LIsom X ε F Γ(Y f X, ε F) = Γ(Y, f F) LIsom X G X ε G Γ(U, ε G) = Γ(U X, G) ε ε Shv X Shv LIsom X X F ε F LIsom X LIsom X g i (Y i Y )i I x i Γ(Y i, ε F) = Γ(Y i, gi (F Y )) (i I) p i,j (x i ) = q i,j (x j ) Y X F F Y g i Y i (U iλ ) λ Λi g i g iλ: U iλ Y i Y xiλ = x i Uiλ Γ(g iλ (U iλ ), F Y ) = Γ(U iλ, g iλ (F Y )) x iλ Γ(g iλ (U iλ ), F Y ) y iλ i, j I λ Λ i, λ Λ j y iλ y jλ g iλ (U iλ ) g jλ (U jλ ) y Γ(Y, F Y ) Γ(Y, F Y ) Γ(U iλ, g iλ (F Y )) x iλ (U iλ ) λ Λi Y i y Γ(Y, F Y ) Γ(Y i, g i (F Y )) x i y ε F LIsom X [SGA4] 8

G ε G X ε ε X F ε ε F = F LIsom X G ε ε G = G ε ε G G f : Y X Y V Γ(V f X, G) Y G Y X U Γ(U, ε G) = Γ(U X, G) Γ ( f 1 (U) f X, G ) = Γ(U, f G Y ) X ε G f G Y Y f ε G G Y Γ(Y, ) Γ(Y f X, ε ε G) = Γ(Y, f ε G) Γ(Y, G Y ) = Γ(Y f X, G) LIsom X ε ε G G LIsom X Y Γ(Y, ) Y Y X Shv LIsom X Γ(X, ): Shv LIsom X Ab Open X LIsom X LIsom X 1.3 1.3.1 1.9 f : Y X i) y Y f (unramified/neat) m Y,y, m X,f(y) O Y,y, O X,f(y) m Y,y = m X,f(y) O Y,y O Y,y /m Y,y O X,f(y) /m X,f(y) Ω 1 Y/X 0 ii) f (étale) 9

1.10 f : Y X y Y f(y) U = Spec A f 1 (U) y V = Spec B f B A B = A[T 1,..., T n ]/(f 1,..., f n ), ( fi ) det T A[T 1,..., T n ]/(f 1,..., f n ) j i,j 1.11 A n A a A Spec A[T ]/(T n a) Spec A T n a T nt n 1 A[T ]/(T n a) (na) 1 T 1 1.12 k k X Spec k k k X Spec A A k A Artin A = p Spec A A p k k [EGA4] 1.13 i) ii) iii) f : Y X X X X X f f : Y X X X iv) f : Y X, g : Z Y f g f g v) 1.6 LIsom X 10

1.14 X X Et X Et X Y X f : Y X f : Y X g : Y Y f = f g 1.13 iv) g Y Et X X Et X (g i : Y i Y ) i I Y, Y i Et X Y = i I g i(y i ) Et X X (étale site) 1.15 Et X X F : Et X Ab Et X (Y i Y ) i I 0 F(Y ) i I F(Y i ) ( ) i,j I F(Y i Y Y j ) pr 1 : Y i Y Y j Y i p i,j : F(Y i ) F(Y i Y Y j ) pr 2 : Y i Y Y j Y j q i,j : F(Y j ) F(Y i Y Y j ) ( ) (x i ) i I (p i,j (x i ) q i,j (x j )) i,j I 1.13 ii), iii) Y i Y Y j Et X X F Et X Y F(Y ) Γ(Y, F) X Shvét X 1.16 k Spec k F 1.12 F k k L F L := F(Spec L) L k L Galois Spec L Spec L F L F L σ Gal(L /L) Spec L σ : Spec L Spec L Gal(L /L) F L F L F L F Gal(L /L) L Spec L Spec L F L L L = σ Gal(L /L) L ; a b (aσ(b)) σ 11

0 F L F L ( ) σ Gal(L /L) F L ( ) x (x σ(x)) σ F L = F Gal(L /L) L M F = lim L F L L k k Galois G k Gal(L/k) F L M F G k k k L = F L M Gal(k/L) F G k M k k L F M (Spec L) = M Gal(k/L) Spec k F M F M F M Shvét Spec k G k k Shvét Spec k Spec k F Γ(Spec k, F) (geometric point) X x x x X x 1.17 X Z X X Y F(Y ) := Hom X (Y, Z) Y Z X F : Et X Ab X Z X Z F : Et X Set 12

Et X (Y i Y ) i I F(Y ) { = (x i ) i I } F(Y i ) p i,j (x i ) = q i,j (x j ) ( i, j I) i I X, Y, Y i Y I Y = i I Y i (Y i Y ) i I (Y Y ) X = Spec A, Y = Spec B, Y = Spec B, Z = Spec C Alg A A Hom AlgA (C, B) = { φ Hom AlgA (C, B ) φ(c) 1 = 1 φ(c) B B B ( c C) } Y Y B B B d: B ( ) B B B d(b ) b 1 1 b 0 B B d B B B B B, B B, B B B B s: B B B B b B d(b ) = 0 b 1 1 b = 0 s id: B B B B b = s(b ) B 1.18 X n 1 i) G a : Y Γ(Y, O Y ) G a,x = Spec O X [T ] X ii) G m : Y Γ(Y, O Y ) G m,x = Spec O X [T, T 1 ] X n iii) µ n = Ker(G m G m ) µ n,x = Spec O X [T ]/(T n 1) X µ n Z/nZ(1) iv) Z/nZ X X n Z/nZ X Z/nZ f : X X X F f f F (f F)(Y ) = F(Y X X) f : Shvét X Shvét X f : Shvét X Shvét X f X 13

i: x X F i i F 1.16 F x F x (stalk) F x = lim F(U) x / U i X Γ: Shvét X Ab, f : Shvét X Shvét X 1.19 X Shvét X Γ 1.20 X F X F 0 F I 0 I 1 0 Γ(X, I 0 ) Γ(X, I 1 ) RΓ(X, F) Ab well-defined RΓ(X, F) i Ker ( Γ(X, I i ) Γ(X, I i+1 ) )/ Im ( Γ(X, I i 1 ) Γ(X, I i ) ) H i (X, F) X F i f : X X Shvét X 0 f I 0 f I 1 Rf F i R i f F 1.21 X Spec k F Spec k 1.16 G k M Γ(Spec k, F) = M G k M G k G k M M M G k Galois H i (G k, M) H i (Spec k, F) = H i (G k, M) Galois 14

1.3.2 k X k G m 1.22 H i (X, G m ) H 0 (X, G m ) = k, H 1 (X, G m ) = Pic(X), H i (X, G m ) = 0 (i 2) Pic(X) X Picard X H 0 (X, G m ) = Γ(X, G m ) = Γ(X, O X ) = k H 1 (X, G m ) = Pic(X) X H 1 Čech H 1 (X, G m ) fpqc Zariski H i (X, G m ) = 0 (i 2) X k(x) Galois H i (G k(x), k(x) ) i 2 Tsen k(x) C 1 ([Ser2, II, 3]) Tsen H i (X, G m ) = 0 (i 2) X X k 0 Γ(X, G m ) k(x ) ord x X Z 0 X X ord f k(x ) f X Γ(X, ) 0 G m j G m,η x X i x Z 0 η X j η X x X x X i x 15

x X H i (X, G m ) H i (X, j G m,η ) x X H i 1 (X, i x Z) H i (X, i x Z) 5 H i (X, j G m,η ) = H i (G k(x), k(x) ) H i (X, i x Z) = H i (G k, Z) = 0 (i 1) 1.42 Tsen H i (X, G m ) = 0 1.22 X Z/nZ(1) 1.23 n 1 k H i (X, Z/nZ(1)) H 0 (X, Z/nZ(1)) = Z/nZ(1), H 1 (X, Z/nZ(1)) = Pic(X)[n], H 2 (X, Z/nZ(1)) = Z/nZ, H i (X, Z/nZ(1)) = 0 (i 3) Z/nZ(1) k 1 n k Z/nZ(1) = Z/nZ Pic(X)[n] Pic(X) n Pic(X) 0 Z/nZ(1) G m n G m 0 X G m G m U Et X a Γ(U, G m ) = Γ(U, O U ) U (U i U) i I a i Γ(U i, G m ) a n i = a Ui V = Spec O U [T ]/(T n a) V U 1.11 T Γ(V, G m ) n Γ(U, G m ) Γ(V, G m ) n a G m G m 1.22 H i (X, Z/nZ(1)) = 0 (i 3) 0 H 0 (X, Z/nZ(1)) k n k H 1 (X, Z/nZ(1)) Pic(X) n Pic(X) H 2 (X, Z/nZ(1)) 0 5 16

H 0 (X, Z/nZ(1)) = Z/nZ(1), H 1 (X, Z/nZ(1)) = Pic(X)[n] deg: Pic(X) deg Z Pic 0 (X) Pic 0 (X) X Jacobi g k Pic 0 (X) n Jacobi [CS] [Mum] deg: Pic(X) deg Z Pic(X)/n Pic(X) Z/nZ H 2 (X, Z/nZ(1)) = Pic(X)/n Pic(X) = Z/nZ k 1 n X Z/nZ(1) = Z/nZ Z/nZ Z/nZ(1) = Z/nZ 1.23 X Z/nZ 1.24 n 1 k H i (X, Z/nZ) H 0 (X, Z/nZ) = Z/nZ, H 1 (X, Z/nZ) = Pic(X)[n]( 1), H 2 (X, Z/nZ) = Z/nZ( 1), H i (X, Z/nZ) = 0 (i 3) Z/nZ( 1) = Hom(Z/nZ(1), Z/nZ) Z/nZ M M( 1) = M Z/nZ Z/nZ( 1) m m 0 Z/nZ(m) = Z/nZ(1) m m < 0 Z/nZ(m) = Z/nZ( 1) ( m) Z/nZ M M(m) = M Z/nZ Z/nZ(m) M Tate (Tate twist) H 0 (X, Z/nZ), H 1 (X, Z/nZ), H 2 (X, Z/nZ) 1, 2g g X 1 Z/nZ 1.23 H 1 (X, Z/nZ) 2g Z/nZ 0 Pic 0 (X) Pic(X) deg Z 0 Pic(X)[n] = Pic 0 (X)[n] Pic 0 (X) X Jacobi k n k Pic 0 (X)[n] = (Z/nZ) 2g 1.25 = E k E(k) Pic 0 (X); P [P ] [O] O E(k) E(k) Pic(X) H 1 (E, Z/nZ) = E[n]( 1) Weil E[n] E[n] Z/nZ(1) E[n]( 1) = E[n] H 1 (E, Z/nZ) = E[n] 17

1.26 A 1 k Z/nZ k 1.27 1.24 n k H i (X, Z/nZ) k p > 0 n = p H 2 (X, Z/pZ) = 0 X k H i (X, Z/pZ) Z/pZ X Z/nZ n X 1.28 k p > 0 X i) X 0 Z/pZ G a G a 0 G a a a p a ii) H i (X, G a ) = H i (X, O X ) Zariski X k H i (X, Z/pZ) H i (X, Z/pZ) = 0 (i 2) H 0 (X, Z/pZ), H 1 (X, Z/pZ) F p iii) X k H i (X, Z/pZ) F p 1.29 Z/nZ Z k X H 1 (X, Z) = 0 Z 1.3.3 l X X n 1 Z/nZ H i (X, Z/nZ) l Galois Z/nZ Q l X Q l Z n 1 H i (X, Z/l n Z) Z l 18

Q l Q l Z/nZ X l 1.30 X Z l X (F n ) n 0 n 0 l n+1 F n = 0, F n+1 /l n+1 F n+1 = Fn 1.31 i) (Z/l n+1 Z) n 0 Z l Z l Z l Z l (m) ii) n 1 l n F = 0 F Z l iii) X Noether x π 1 (X, x) ρ: π 1 (X, x) Aut Zl (Λ) Z l Λ π 1 (X, x) l π 1 (X, x) Λ/l n+1 Λ X Y n F n (F n ) n 0 Z l ρ Z l X Z l (F n ) n 0 F n X (smooth) Noether X Z l π 1 (X, x) l 1.32 Q l Z l Z l F, G Hom Zl (F, G) Zl Q l Q l l Z l F l F Ql 1.33 i) Z l Z l (m) l Q l (m) ii) n 1 l n F = 0 F Z l 19

l 0 iii) X Noether x ρ: π 1 (X, x) GL(V ) π 1 (X, x) l Z l Λ l (ρ, Λ) X Z l F l F Ql Λ l ρ l X Z l l l (smooth) Noether X l π 1 (X, x) l Z l l 1.34 X (F n ) n 0 lim n Γ(X, F n ) i H i (X, ) Z l F = (F n ) n 0 X F l H i (X, F) l F Ql l H i (X, F Ql ) = H i (X, F) Zl Q l H i (X, Q l (m)) H i (X, (F n ) n 0 ) lim n H i (X, F n ) [Jan] 1.35 F = (F n ) n 0 Z l 1 lim n lim n 1 1 0 lim n H i 1 (X, F n ) H i (X, F) lim H i (X, F n n ) 0 (H i 1 (X, F n )) n 0 Mittag-Leffler n 0 H i 1 (X, F n ) H i (X, F) = lim H i (X, F n n ) 1.36 i) X k l k 1.24 i, n H i (X, Z/l n+1 Z) H i (X, Q l ) = (lim H i (X, Z/l n+1 Z)) n Zl Q l 20

H 0 (X, Q l ) = Q l, H 1 (X, Q l ) = V l Pic(X)( 1), H 2 (X, Q l ) = Q l ( 1), H i (X, Q l ) = 0 (i 3) ii) X k l k X l F = (F n ) n 0 H i (X, F n ) Z/l n+1 Z H i (X, F) = lim n H i (X, F n ) 1.37 k G k l (ρ, V ) ρ Spec k l F H i (Spec k, F) = H i (G k, V ) Z l l R i f Z l (F n ) n 0 (R i f F n ) n 0 Z l Z l l Z l l Rf [Eke] 1.4 6 Galois [SGA4], [SGA4 1 2 ] 1.4.1 f : Y X F X f : H i (X, F) H i (Y, f F) g : Z Y (f g) = g f F Z/nZ f (Z/nZ) = Z/nZ f : H i (X, Z/nZ) H i (Y, Z/nZ) X H i (X, Z/nZ) Z/nZ l X H i (X, Q l ) Q l 6 l 21

X : H i (X, Z/nZ) H j (X, Z/nZ) H i+j (X, Z/nZ) x H i (X, Z/nZ), y H j (X, Z/nZ) x y = ( 1) ij (y x) f : Y X f (x y) = (f x) (f y) l 1.38 E k H 1 (E, Z/nZ) = E[n]( 1), H 2 (E, Z/nZ) = Z/nZ( 1) Weil E[n] E[n] Z/nZ(1) ( 2) 1.4.2 I (X i ) i I Noether i j p ij : X j X i X = lim X i I i X i X i = Spec A i, A = lim A i I i X = Spec A X X i p i 1.39 [SGA4, Exposé VII] i I X i F i i j p ij F i = F j i I F = p i F i i H m (X, F) = lim H m (X i I i, F i ) n 1 H m (X, Z/nZ) = lim H m (X i I i, Z/nZ) l l ii) 1.40 k I k k (Spec L) L I lim L I Spec L = Spec k 22

i) F Spec k Spec L L k F L lim H i (Spec L, F L I L ) = H i (Spec k, F k ) Galois ii) F Spec k l Spec L L k F L lim H 0 (Spec L, F L I L ) = H 0 (Spec k, F k ) 1.41 f : Y X x X X x X X h x Y F (R i f F) x = H i (Y X X h x, F Y X X h x ) Y = X, f = id H i (Xx h, F X h) F x (i = 0), x = 0 (i 1) x X X h x x / U i X U U R i f F = X Et X Ab; V H i (Y X V, F Y X V ) lim (Y U X U) = Y X Xx h 1.39 (R i f F) x = lim U H i (Y X U, F Y X U) = H i (Y X X h x, F Y X X h x ) f = id R i f F = 0 (i 1) 23

1.42 j : η X 1.22 R i j G m = 0 (i 1) 1.4.3 n n + 1 0 0 (torsion sheaf) X X 1.43 [SGA4, Exposé X] k X k d X l F H i (X, F) = 0 (i > 2d) X H i (X, F) = 0 (i > d) Lefschetz [SGA4, Exposé XIV] 1.4.4 1.44 [SGA4, Exposé XII, XIII] Y g / Y X f g / X f f Y F g Rf F = Rf g F l 1.45 X X x 1.41 g R i f F = (R i f F) x = H i (Y X X h x, F Y X X h x ) R i f g F = H i (Y x, F Yx ) x 24

H i (Y X X h x, F Y X X h x ) = H i (Y x, F Yx ) X x H i (Y, F) = H i (Y x, F Yx ) 1.46 X Hausdorff Z X F H i (Z, F Z ) = lim U Z H i (U, F U ) 1.47 [SGA4, Exposé XV, XVI] Y g / Y X f g / X f g f Y F g Rf F = Rf g F l Y l 7 1.48 k X k k k k n 1 H i = (X, Z/nZ) H i (X k, Z/nZ) k k Et X Et Xk ([SGA4, Exposé VIII]) k k(t 1,..., T m ) Spec k A m k = Spec k[t 1,..., T m ] x x A m k Spec k Spec k A m k Spec k 7 k Frac W (k) k 25

Spec k Spec k X Spec k A m k A m k f g g / X f / Spec k g R i f Z/nZ = R i f Z/nZ x 1.41 H i (X, Z/nZ) = H i (X k, Z/nZ) 2 k k(t 1,..., T m ) k k 1.39 1.4.5 1.49 [SGA4 1 2, Finitude] k X k k n 1 H i (X, Z/nZ) Z/nZ l k H i (X, Q l ) Q l F l H i (X, F) Q l X k 1.24 X k Deligne ([dj]) X k (smooth purity) k 1.4.6 1.50 [SGA4, Exposé XI, XVI] X C X C X(C) n 1 H i (X, Z/nZ) = H i (X(C), Z/nZ) l H i (X, Q l ) = H i (X(C), Q) Q Q l 26

1.51 X C H 1 Jacobi 1.4.7 Poincaré k X k d n 1 k (trace map) ρ X : H 2d (X, Z/nZ(d)) Z/nZ d = 1 X ρ X 1.23 l k ρ X : H 2d (X, Q l (d)) Q l 1.52 Poincaré [SGA4, Exposé XVIII] H i (X, Z/nZ) H 2d i( X, Z/nZ(d) ) H 2d( X, Z/nZ(d) ) ρ X Z/nZ H i (X, Z/nZ) Hom Z/nZ ( H 2d i (X, Z/nZ(d)), Z/nZ ) l 1.53 X k Jacobi X, Y k X d Y d f : Y X k f : H i (X, Z/nZ) H i (Y, Z/nZ) (push-forward) f : H i (Y, Z/nZ) H i+2d 2d (X, Z/nZ(d d )) f : H i (Y, Q l ) H i+2d 2d (X, Q l (d d )) 1.54 x H i (X, Z/nZ), y H j (Y, Z/nZ) f (f x y) = x f y 27

1.55 f X, Y, f X k d Y k d f 1.4.8 Künneth 1.56 Künneth [SGA4 1 2, Finitude] k l k k X, Y H m (X k Y, Q l ) = i+j=m H i (X, Q l ) Ql H j (Y, Q l ) i + j = m i, j H i (X, Q l ) Ql H j (Y, Q l ) pr 1 pr 2 H m (X k Y, Q l ) X, Y k Künneth X k Y pr 1 / X pr 2 Y / Spec k Deligne ([SGA4 1 2, Finitude]) X k 1.4.9 Lefschetz k X k d l k Z X c Z X (cycle class) cl(z) H 2c (X, Q l (c)) ([SGA4 1 2, Cycle]) cl cl X Chow CH d c (X) X d c cl: CH d c (X) H 2c (X, Q l (c)) cl Chow ζ 1, 28

ζ 2 cl(ζ 1 ζ 2 ) = cl(ζ 1 ) cl(ζ 2 ) X k ζ CH 0 (X) deg ζ = ρ X (cl(ζ)) c = 0 X Z cl(z) H 0 (X, Q l ) Z 1 Z 0 X Q l X k Z k cl(z) Z X i Poincaré i : H j (Z, Q l ) H j+2c (X, Q l (c)) Gysin j = 0 i : H 0 (Z, Q l ) H 2c (X, Q l (c)) 1 H 0 (Z, Q l ) cl(z) 1.57 X k x X H 2 (X, Q l (1)) cl(x) H 2 k d H 2d (X, Q l (d)) Künneth Lefschetz 1.58 Lefschetz k X k f : X X k Γ f X f id X k X X k X k l X X k X Γ id 2 dim X i=0 ( 1) i Tr ( f ; H i (X, Q l ) ) = deg(γ f X ) deg(γ f X ) f : X X d = dim X Tate γ = cl(γ f ) H 2d (X k X) δ : X X k X deg(γ f X ) = ρ X δ (γ) f = pr 1 (f id), id = pr 2 (f id) x H i (X) f (x) = pr 2 (f id) (f id) pr 1(x) = pr 2 ( pr 1 (x) (f id) (1) ) 29

= pr 2 ( pr 1 (x) γ ) 2 3 Gysin Künneth H 2d (X k X) = s+t=2d Hs (X) H t (X) γ (s, t) n a s,n b t,n f (x) = n ρ X(x a 2d i,n )b i,n Tr(f ; H i (X)) = n ρ X(b i,n a 2d i,n ) 2d i=0 ( 1) i Tr ( f ; H i (X) ) = = 2d i=0( 1) i ρ X (b i,n a 2d i,n ) n 2d ρ X (a 2d i,n b i,n ) = ρ X δ (γ) i=0 n Lefschetz Galois 3.3 30

2 Galois 2.1 Galois k k l X k 8 σ G k X k σ id Spec σ X k = X k k X k k = X k X k (σ ) : H i (X k, Q l ) H i (X k, Q l ) G k H i (X k, Q l ) 2.1 G k H i (X k, Q l ) G k H i (X k, Z l ) 1.36 H i (X k, Z l ) = lim H i (X n k, Z/l n+1 Z) lim H i (X n k, Z/l n+1 Z) l m 1 X k 0 Z/l n+1 m Z lm Z/l n Z Z/l m Z 0 lim H i (X k, Z/l n+1 Z) lm lim H i (X n k, Z/l n+1 Z) H i (X k, Z/l m Z) n Mittag-Leffler ( ) l m lim H i (X n k, Z/l n+1 Z) = Ker lim H i (X k, Z/l n+1 Z) H i (X k, Z/l m Z) n G k H i (X k, Z/l n+1 Z) 1.39 H i (X k, Z/l n+1 Z) = lim H i (X L L, Z/l n+1 Z) L k k H i (X L, Z/l n+1 Z) Gal(k/L) G k 2.2 H i (X k, Q l ) Galois Galois Π 8 31

Π isotypic H i (X k, Q l ) H i (X k, Q l ) X, Y k X d Y d 2.2 Chow CH d (X k Y ) Q = CH d (X k Y ) Z Q Y X (algebraic correspondence) f : Y X k Y f id X k Y d k d Z k a: Z X k Y a [Z] [a] i = 1, 2 a i = pr i a a 2 a [a] Q 3.3 [a] Hecke a 2 a 1 2.3 Sh U G U U G(A ) g G(A ) Hecke Sh U Sh U gug 1 pr y pr / Sh g 1 Ug g $ Sh U Sh U gug 1 Sh U Sh U [g] 2.4 γ Y X H i (X k, Q l ) pr 1 H i (X k k Y k, Q l ) cl(γ) H i+2d( X k k Y k, Q l (d) ) 32

pr 2 H i (Y k, Q l ) γ : H i (X k, Q l ) H i (Y k, Q l ) G k Q l γ f : Y X γ = f Lefschetz 2.8 2.5 a: Z X k Y a 2 [a] = a 2 a 1 2.6 i) Y k d γ 1, γ 2 Y X Y Y γ 1 γ 2 = pr 13 (pr 12 γ 1 pr 23 γ 2) Y X γ 1 γ 2 ii) (γ 1 γ 2 ) = γ 2 γ 1 2.7 X X γ i γ H i (X k, Q l ) γ (idempotent) X γ (X, γ) H i (X k, γ, Q l ) = Im ( γ : H i (X k, Q l ) H i (X k, Q l ) ) G k l H i (X k, γ, Q l ) γ H i (X k, γ, Q l ) H i (X k, Q l ) γ H i (X k, γ, Q l ) σ G k Tr ( σ; H i (X k, γ, Q l ) ) = Tr ( σ γ ; H i (X k, Q l ) ) = Tr ( γ σ; H i (X k, Q l ) ) 33

2.8 k X (motive) 9 k X γ (X, γ) (X, γ) (X, γ ) X X δ γ δ = δ γ 10 (X, γ) H i (X k, γ, Q l ) G k l (X, γ) Galois Galois Galois [Ito2] 2.9 Hecke Galois C Q l H i (X k, Q l ) Q l H i (X k, Q l ) = H i (X k, Q l ) Ql Q l Q l γ (X, γ) Galois H i (X k, γ, Q l ) Q l l Q l 9 Q l (1) Tate Tate [Sch2] 10 X (X, X ) 34

3 Galois F G F l S F H i (S F, Q l ) S C S(C) 1.48 H i (S F, Q l ) = H i (S C, Q l ) = H i (S(C), Q) Q Q l dim Ql H i (S F, Q l ) = dim Q H i (S(C), Q) dim Q H i (S(C), Q) de Rham S S(C) S(C) de Rham Lie (g, K) S(C) H i (S(C), Q) Hecke Galois (g, K) G F H i (S F, Q l ) F v F v K H i (S F, Q l ) G K Galois 11 1.48 G K H i (S F, Q l ) = H i (S K, Q l ) S K S K Galois S K K X Galois H i (X K, Q l ) v 12 v K O K X 3.1 K X O K X X OK K = X F F S 3.2 i) ([Nag1], [Nag2], [Lüt], [Con]) 11 F K 12 G K Z/2Z G K = Z/2Z H i (X K, Q l ) Hodge 35

ii) O K i) X X K v l X G K l O K X κ X κ v l p Hodge G K l H i (X K, Q l ) Weil-Deligne 13 v l 14 l F v l F F v K K O K κ p κ q κ q Frob v 3.3 G κ = Ẑ Frob v Frob Z v G κ G K G κ ; σ σ W K K Weil σ W K σ = Frob n(σ) v n(σ) n: W K Z W + K = {σ W K n(σ) 0} n(φ) = 1 φ W K Frobenius I K = {σ W K n(σ) = 0} G K W K = i Z φi I K I K W K W K I K O K ϖ l (ϖ 1/lm ) m t l : I K Z l (1) σ (σ(ϖ 1/lm )/ϖ 1/lm ) m ϖ l (ϖ 1/lm ) m t l Z l (1) I K l X K d X γ X F S S 13 Fontaine D pst v l l 14 [Mie] 36

3.1 Weil-Deligne G K l Weil-Deligne [BH, 7] 3.3 0 Ω Weil-Deligne W K Ω (r, V ) N : V V σ W K Nr(σ) = q n(σ) r(σ)n 3.4 N W K N : V V ( 1) m N m : V V ( m) 0 2 Z l (1) = Z l Weil-Deligne Ω C Q l Weil-Deligne Q l Weil-Deligne Weil-Deligne l 3.5 Z l (1) = Z l Weil-Deligne (r, N) ρ(σ) = r(σ) exp ( t l (φ n(σ) σ)n ) (σ W K ) W K l ρ Z l (1) = Z l t l I K Z l (r, N) ρ Frobenius φ Z l (1) = Z l (r, N) ρ W K l Weil-Deligne Grothendieck 3.6 Grothendieck 3.5 (r, N) ρ Q l Weil-Deligne l WD 37

(r, N) ρ 15 Grothendieck G K l [ST] 3.7 i) κ p l l W K l W K l W K n l GL n (K) l Langlands Harris- Taylor [HT] Henniart [Hen] ii) Galois G K l l Galois Weil l 3.8 W K l ρ G K l ρ(φ) l 3.9 ρ W K l WD(ρ) = (r, N) ρ r IK N t l : I K Z l (1) = Z l 1 σ 0 I K N = log ρ(σ 0 ) = n=1 ( 1)n (ρ(σ 0 ) 1) n /n Weil-Deligne Frobenius Weil-Deligne 3.10 W F Weil-Deligne (r, N) r r(φ) (r, N) 2 Frobenius Weil-Deligne 15 G K l ρ (quasi-unipotent) σ I K m 1 ρ(σ) m 1 38

Weil-Deligne (r, N) Frobenius Weil-Deligne (r ss, N) r(φ) = su = us r(φ) Jordan s u r ss (φ n σ) = s n r(σ) (σ I K ) r ss φ (r ss, N) (r, N) Frobenius (r, N) F -ss Weil-Deligne (r ss, 0) (r, N) ss (r, N) 2 Frobenius Weil-Deligne (r, N), (r, N ) r r 3.11 [SaT1, Lemma 1 (1)] r, r W K σ W + K Tr r(σ) = Tr r (σ) r = r 3.12 r : W K GL(V ) W K i) r(i K ) ii) m 1 r(φ m ): V V W K V x 1,..., x n V r Stab IK (x i ) I K F L I K W L n i=1 Stab I K (x i ) L F Galois H = I K W L W K H I K Ker r r(i K ) φ I K /H I K /H m > 0 φ m I K /H m r(φ m ): V V W K W K I K φ 3.11 3.12 ii) r(φ m ), r (φ m ) W K m 1 r(φ m ) r (φ m ) Q l a 1,..., a k r r(φ m ) r = r 1 r k r i r(φ m ) a i r r (φ m ) r = r 1 r k r i r (φ m ) a i Q i (T ), P i (T ) Q i (T ) = (T a i ) 1 n j=1 (T a j), P i (T ) = Q i (a i ) 1 Q i (T ) P i (r(φ m )) r r i 39

P i (r (φ m )) r r i σ W + K ( ( Tr r i (σ) = Tr P i r(φ m ) ) ) ( ( r(σ) = Tr P i r (φ m ) ) ) r (σ) = Tr r i(σ) σ W K φ ml σ W + K l Tr r i (σ) = a l i Tr r i (φ ml σ) = a l i Tr r i (φml σ) = Tr r i (σ) χ i : W K Q l φ a 1/m i χ i r i, χ i r i W K (χ i r i )(φ m ) = id (χ i r i )(W K ) r i (I K ) 3.12 χ i (φ n ) (0 n m 1) χ i r i χ i r i χ i r i = χi r i r i = r i 2 Weil-Deligne (r, N), (r, N ) r = r N Weil-Deligne 3.13 (r, V ) W K k (r, V ) k (strictly pure of weight k) r(φ) q k/2 Frobenius φ W K V {Fil W i } i R (r, V ) (weight filtration) i R gr W i V := Fil W i V/( j<i FilW j V ) i (r, V ) (mixed) gr W i 0 i R (r, V ) (weight) Weil-Deligne (r, V, N) (r, V, N) (r, V ) 3.14 Weil-Deligne Nr(φ) = qr(φ)n (r, N, V ) N Fil W i Fil W i 2 N : grw i V gr W i 2 V 3.15 Fil W = {Fil W i } i Z 40

Weil-Deligne 3.16 Weil-Deligne (r, N, V ) (pure) w R (r, N, V ) w + Z i 0 N i : gr W w+i V gr W w i V w (r, N, V ) (weight) 3.17 Langlands n Weil-Deligne GL n (K) (absolutely tempered representation) 16 ([TY, Lemma 1.4 (3)]) 3.18 W K Q l Q l ( 1) Fil W 1 = 0, Fil W 0 = Fil W 1 = Q l, Fil W 2 = Q l Q l ( 1) {0, 2} ( (Q l ) Q l ( 1), 0) Weil-Deligne N = 0 1 (Q l Q l ( 1), N) Weil-Deligne Weil- 0 0 Deligne Langlands GL 2 (K) Steinberg 3.19 i) Weil-Deligne (r, N) (r, N) (r, N) F -ss ii) L K K Weil-Deligne (r, N) L (r WL, N) l (r, N) (r WL, N) Frobenius Weil-Deligne 3.20 [TY, Lemma 1.4 (4)] (r, V, N), (r, V, N ) Frobenius Weil-Deligne (r, V, N) = (r, V, N ) 16 C 41

W K (r, V ) m (r(m), V ) r(m)(σ) = q n(σ)m r(σ) (r, V ) (r(m), V ) (r, V ) V i = gr W i V (r, V ) W K V = i V i V = i V i N N Vi : V i V i 2 i 0 N i+1 : V i N N V i 2 P i V i+2 i+1 Vi V i 2 V i = NV i+2 P i V i = i+2j i Z j=0 N j P i+2j = i i Z j=0 N j P i 0 j i N j : P i V i 2j N i j r i = r Pi i,j N j : i Z i j=0 r i(j) i Z i j=0 N j P i W K i Z i j=0 r i(j) r i (j) 0 j < i id Pi : r i (j) r i (j + 1) j = i 0 N P i, r i P i P i V i V i 2 ( i 1) W K V i V i 2 ( i 1) r i = r i i i Z j=0 r i(j) = i i Z j=0 r i (j) (r, V, N) = (r, V, N ) W K l Weil-Deligne l ρ, ρ W K l ρ Frobenius WD(ρ) Frobenius ρ Frobenius ρ F -ss ρ ss WD WD(ρ) F -ss, WD(ρ) ss σ W + K Tr ρ(σ) = Tr ρ (σ) ρ ss = ρ ss 3.11 WD(ρ) = (r, N) ρ(σ) r(σ) Tr ρ(σ) = Tr r(σ) ρ WD(ρ) ρ, ρ Frobenius l ρ ss = ρ ss ρ = ρ 3.20 3.21 Galois 42

o o G κ Q l (ρ, V ) w ρ(frob v ) q w/2 3.3 ρ G K l W K w w 3.2 Rψ H i (X K, Q l ) G K O K O ur K O K Y Y κ i / Y O ur K j Y K Spec κ / Spec O ur K Spec K 3.22 [SGA7, Exposé XIII] Y l F RψF = i Rj (F YK ) Y κ l Rψ (nearby cycle functor) RψF i R i ψf RψQ l G K σ G K (σ ) RψQ l RψQ l σ σ G κ Y κ G K RψQ l I K Y X X Y O K RψQ l X K 3.23 G K H i (X κ, RψQ l ) = H i (X K, Q l ) G K E i,j 2 = H i (X κ, R j ψq l ) = H i+j (X K, Q l ) O ur K X O ur K Spec Our K 1.45 H i (X κ, RψQ l ) = H i (X O ur K, Rj Q l ) = H i (X K, Q l ) H i (X K, Q l ) RψQ l X κ 2 43

o o 3.3 X Spec O K X X v RψQ l 3.24 X Spec O K RψQ l = Q l R 0 ψq l = Q l R i ψq l = 0 (i 1) RψQ l I K X κ i / X O ur K j X K f f f Spec κ i / Spec O ur K j Spec K f i Rj Q l = i f Rj Q l = i Rj f Q l = RψQ l 3.23 X = Spec O K H m (Spec κ, i Rj Q l ) = H m (Spec K, Q l ) m = 0 Q l I K m 1 0 i Rj Q l = Q l, RψQ l = f Q l = Q l 3.23 1.5 i) 3.25 X Spec O K G K H i (X K, Q l ) = H i (X κ, Q l ) G K G κ H i (X κ, Q l ) G K G κ H i (X K, Q l ) H i (S F, Q l ) 3.26 G F l H i (S F, Q l ) S S S Spec O F S U S S Spec O F U 44

Spec O F W Spec O F (Spec O F ) \ W Spec O F W S Spec O F (Spec O F ) \ W 3.25 v / W H i (S F, Q l ) v 3.25 X Spec O K G K H i (X K, Q l ) G κ H i (X κ, Q l ) G κ Frobenius Frob v G κ Frob v H i (X κ, Q l ) 3.27 κ m κ m κ Y 2d i=0 ( 1) i Tr ( Frob m v ; H i (Y κ, Q l ) ) = #Y (κ m ) κ m κ Y κm Y m = 1 ϕ v : Y Y q Frobenius q κ Frob v ϕ v : H i (Y κ, Q l ) H i (Y κ, Q l ) 17 ϕ v Y κ Y (κ) 1 ϕ v 0 Lefschetz 3.28 Spec κ ([SGA4 1 2, Rapport]) 3.27 3.29 κ Y Z(Y, T ) Y (congruence zeta function) κ n κ n ( Z(Y, T ) = exp n=1 #Y (κ n ) T n) n 17 Frob v Frob v Frobenius 45

3.30 Y = P 1 κ #P1 (κ n ) = q n + 1 Z(P 1 κ, T ) ( Z(P 1 κ, T ) = exp = n=1 q n T n n + n=1 1 (1 T )(1 qt ) T n ) = exp ( log(1 qt ) log(1 T ) ) n 3.31 Y κ P i (Y, T ) = det(1 Frob v T ; H i (Y κ, Q l )) Z(Y, T ) = 2 dim Y i=0 P i (Y, T ) ( 1)i+1 3.32 3.27 3.27 Frob v H i Weil 3.33 Weil Deligne [Del2], [Del3] Y κ Frob v H i (Y κ, Q l ) α Q l α Z ι: Q l = C ι(α) = q i/2 G κ l H i (Y κ, Q l ) i Frob v H i (Y κ, Q l ) P i (Y, T ) P i (Y, T ) β Q l Q ι: Q l = C ι(β) = q i/2 3.34 κ Y i, j P i (Y, T ) P j (Y, T ) P i (Y, T ) P j (Y, T ) 46

2 dim Y i=0 P i (Y, T ) ( 1)i+1 P i (Y, T ) Tr(Frob m v ; H i (Y κ, Q l )) i) n #Y (κ n ) ii) i) Z(Y, T ) iii) Z(Y, T ) q i/2 β 1,..., β k P i (Y, T ) = k j=1 (1 β 1 j T ), Tr(Frob m v ; H i (Y κ, Q l )) = β1 m + + β m k X O K n X κ n Tr(Frob m v ; H i (X K, Q l )) S v Tr(Frob m v ; H i (S F, Q l )) n S κ n 3.35 F 3 Y 0 : y 2 = x 5 +1 F 3 Y Y 0 A 1 F 3 ; (x, y) x f : Y P 1 F 3 P 1 F 3 5 6 2 Riemann-Hurwitz f 6 Y 2 f P 1 F 3 1 F 3 H 1 (Y F3, Q l ) 4 P 1 (Y, T ) x x 5 + 1 F 3 F 3, F 9 F 9 #Y (F 3 ) = 4, #Y (F 9 ) = 10 H 0 (Y F3, Q l ), H 2 (Y F3, Q l ) Frob 3 1, 3 Tr(Frob 3 ; H 1 (Y F3, Q l )) = Tr(Frob 2 3; H 1 (Y F3, Q l )) = 0 Frob 3 H 1 (Y F3, Q l ) a, b, c, d a + b + c + d = a 2 + b 2 + c 2 + d 2 = 0 H 1 (Y F3, Q l ), Poincaré Frob 3 (x), Frob 3 (y) = 3 x, y det Frob 3 = 9 abcd = 9 1 Poincaré {a, b, c, d} = {3/a, 3/b, 3/c, 3/d} 1/a + 1/b + 1/c + 1/d = 0 a, b, c, d T 4 +9 = 0 4 P 1 (Y, T ) = 1+9T 4 Weil Tr ( Frob m 3 ; H 1 (Y F3, Q l ) ) 0 (4 m) = 4( 9) m/4 (4 m) 47

P i (Y, T ), Tr(Frob m v ; H i (Y κ, Q l )) 3.36 Y κ P i (Y, T ) l Tr(Frob m v ; H i (Y κ, Q l )) l P i (Y, T ) {β 1,..., β k } l P i (Y, T ) l β 1,..., β k Q σ G Q σ(β j ) {β 1,..., β k } 3.33 ι P i (Y, T ) = k j=1 (1 β 1 j T ) Q[T ] G Q Q 3.33 β1 1,..., β 1 k P i (Y, T ) P i (Y, T ) Z[T ] 3.37 {H i (S F, Q l )} l p 18 F Σ v / Σ v l l H i (S F, Q l ) GK m Z Tr(Frob m v ; H i (S F, Q l )) l γ X H i (X K, γ, Q l ) H i (X K, Q l ) 3.38 H i (X K, γ, Q l ) G K Γ S G F l H i (S F, Γ, Q l ) CH d (X OK X) CH d (X K X) γ X OK X γ γ γ X κ κ X κ γ ([Ful, 20.3]) γ CH d (X κ κ X κ ) H i (X κ, Q l ) = H i (X K, Q l ) γ / H i (X κ, Q l ) = γ / H i (X K, Q l ) 17 [Tay] [Tay] v l p 48

γ γ G K H i (X K, γ, Q l ) = H i (X κ, γ, Q l ) σ W K H i (X K, γ, Q l ) Frob n(σ) v H i (X κ, γ, Q l ) i ( 1)i Tr(Frob m v ; H i (X κ, γ, Q l )) γ i ( 1)i Tr(γ Frob m v ; H i (X κ, Q l )) 3.27 3.39 X κ γ (m) γ (m) = (ϕ m v id) γ ϕ v q Frobenius 2d i=0 ( 1) i Tr ( Frob m v ; H i (X κ, γ, Q l ) ) = deg ( [γ (m) ] X ) i ( 1)i Tr(γ Frob m v ; H i (X κ, Q l )) γ γ a: Z X κ κ X κ Z z ϕ m v (a 1 (z)) = a 2 (z) 3.36 3.37 3.40 det(1 Frob v T ; H i (X κ, γ, Q l )) l Tr(Frob m v ; H i (X κ, γ, Q l )) l Γ S {H i (S F, Γ, Q l )} l m 0 Tr(Frob m v ; H i (X κ, γ, Q l )) l 3.34 Q(T ) = c 0 + c 1 T + + c n T n Q[T ] Q(T ) 1 (mod P i (X κ, T )), Q(T ) 0 (mod P j (X κ, T )) (j i) Q(Frob v ) H i (X κ, Q l ) id H j (X κ, Q l ) (j i) 0 Tr ( Frob m v ; H i (X κ, γ, Q l ) ) = Tr ( γ Frob m v ; H i (X κ, Q l ) ) = j ( 1) j Tr ( γ Frob m v Q(Frob v ); H j (X κ, Q l ) ) = = n c l ( 1) j Tr ( γ Frob m+l v ; H j (X κ, Q l ) ) l=0 l=0 j n c l ( 1) j Tr ( Frobv m+l ; H j (X κ, γ, Q l ) ) j 49

3.39 l γ c 1 det(1 Frob v T ; H i (X κ, γ, Q l )) c γ det(1 Frob v T ; H i (X κ, γ, Q l )) Z[T ] [Kle] 3.41 k Y i 0 H i (Y k, Q l ) id H j (Y k, Q l ) (j i) 0 i Künneth (Künneth projector) k i Künneth Q(ϕ v ) k Künneth Y 2 3.39 a 2 a: Z X κ κ X κ Z κ d γ 3.42 [Fuj], [Var] Z κ d a: Z X κ κ X κ κ a 2 = pr 2 a m 1 2d i=0 ( 1) i Tr ( Frob m v ; H i (X κ, [a], Q l ) ) = # { z Z(κ) ϕ m v (a 1 (z)) = a 2 (z) } 3.43 m 1 i ( 1)i Tr(Frob m v ; H i (X κ, [a], Q l )) m i ( 1)i Tr(Frob m v ; H i (X κ, [a], Q l )) 3.44 X κ κ m [HT] [Laf] 50

3.45 F 7 3 C : X 3 + Y 3 = Z 3 1 H 1 (C F7, Q l ) 2 C Z/3Z a[x : Y : Z] = [2 a X : Y : Z] H i (C F7, Q l ) Z/3Z a Z/3Z Tr(a Frob 7 ; H 1 (C F7, Q l )) 3.42 [(2 a X) 7 : Y 7 : Z 7 ] = [X : Y : Z] [X : Y : Z] P 2 (F 7 ) 2 i=0 ( 1)i Tr(a Frob 7 ; H i (C F7, Q l )) a = 0 9, a = 1 12 a = 1 3 a H 0 (C F7, Q l ), H 2 (C F7, Q l ) Tr(a Frob 7 ; H 0 (C F7, Q l )) = 1, Tr(a Frob 7 ; H 2 (C F7, Q l )) = 7 Tr(a Frob 7 ; H 1 (C F7, Q l )) a = 0 1 a = 1 4 a = 1 5 Q l 1 3 ω l 1 3 χ: Z/3Z Q l χ(a) = ωa i = 0, 1, 2 γ i = (1/3) a Z/3Z χ(a) i [a] H 1 (C F7, Q l ) H 1 (C F7, Q l ) = 2 i=0 H1 (C F7, γ i, Q l ) H 1 (C F7, γ i, Q l ) H 1 (C F7, Q l ) Z/3Z χ i Tr ( Frob 7 ; H 1 (C F7, γ 1, Q l ) ) = 1 + 3ω, Tr ( Frob 7 ; H 1 (C F7, γ 2, Q l ) ) = 1 + 3ω 2 H 1 (C F7, γ i, Q l ) 0 (i = 1, 2) H 1 (C F7, γ 0, Q l ) = 0, dim Ql H 1 (C F7, γ 1, Q l ) = dim Ql H 1 (C F7, γ 1, Q l ) = 1 Frob 7 H 1 (C F7, γ 1, Q l ), H 1 (C F7, γ 2, Q l ) 1 + 3ω 1 + 3ω 2 3.46 Weil Galois Ramanujan Galois Weil Weil Ramanujan (q) = q n=1 (1 qn ) 24 = n=1 τ(n)qn G Q l ρ p l det(1 Frob p T ; ρ ) = 1 τ(p)t + p 11 T 2 Q 11 11 Hecke ([Del1], [Sch1]) Weil 1 τ(p)t + p 11 T 2 p 11/2 τ(p) τ(p) 2p 11/2 51

3.4 X Spec O K 3.47 O K Y (semistable) y Y 0 r n O K ϖ y 19 Y Y Y Spec O K [T 1,..., T n ]/(T 1 T r ϖ) Y κ κ Y (strictly semistable) 3.48 i) O K O K Y κ ii) Y O K y Y 0 r n O K ϖ y Zariski Y Y Y Spec O K [T 1,..., T n ]/(T 1 T r ϖ) X X X Galois 1.5 ii) 3.49 X H i (X K, Q l ) G K V G K l W V G K V W, V/W 3.23 3.49 I K R i ψq l 3.49 3.50 X N 1 σ I K x X κ (σ 1) N (R i ψq l ) x 0 (R i ψq l ) x x 0 r n 18 y 52

N > 0 Spec O K [T 1,..., T n ]/(T 1 T r ϖ) O K R i ψq l (σ 1) N 0 Spec O K [T 1,..., T n ]/(T 1 T r ϖ) Spec O K [T 1,..., T r ]/(T 1 T r ϖ) R i ψ R i ψ n = r n = r = 2 P 1 O K P 1 κ O K Y Y y Y κ O K y Y Spec O K [T 1, T 2 ]/(T 1 T 2 ϖ) (R i ψ Y Q l ) y Y Rψ Rψ Y I K U = Y κ \ {y} I K H i (Y κ, RψQ l ) (R i ψq l ) y H i+1 c (U κ, RψQ l ) Y P 1 K Hi (Y κ, RψQ l ) = H i (Y K, Q l ) I K 3.25 U O K 3.24 Hc i+1 (U κ, RψQ l ) = Hc i+1 (U κ, Q l ) 20 I K (σ 1) 2 (σ I K ) (R i ψq l ) y 0 n = r Spec O K [T 1,..., T n ]/(T 1 T n 1 ϖ) (T 1, T n ) ϖ Spec O K [T 1,..., T n ]/(T 1 T n ϖ) O K Y j > 2 dim Y κ i > dim Y K H j (Y κ, R i ψq l ) = 0 3.49 [RZ] 3.51 X R i ψq l I K R i ψq l P K K RψQ l I K P K 20 3.24 X O K 53

X 3.49 I K H i (X K, Q l ) H i (X K, Q l ) Frobenius 2 σ W + K Tr(σ; Hi (X K, Q l )) N = n=1 ( 1)n 1 (σ 0 1) n /n σ 0 t l (σ 0 ) Z l (1) I K 3.9 X κ D 1,..., D m {1,..., m} I D I = i I D i j D (j) = #I=j+1 D I 3.52 [RZ], [SaT2] X G K E s,t 1 = i max{0, s} H t 2i( D (s+2i) κ, Q l ( i) ) = H s+t (X K, Q l ) (weight spectral sequence) σ 0 1 N E s,t 1 = i max{0, s} Ht 2i( D (s+2i) κ, Q l ( i) ) id t l (σ 0 ) H s+t (X K, Q l ) σ 0 1 E s+2,t 2 1 = i max{1, s 1} Ht 2i( D (s+2i) κ, Q l ( i + 1) ) H s+t (X K, Q l ) N X d D (s+2i) d s 2i E s,t 1 0 0 t 2i 2(d s 2i) i max{0, s} E s,t 1 0 (s, t) 0 2s + t 2d 0 t 2d d = 2 E 1 Q l H 0 (D (2) Gys )( 2) H 2 (D (1) Gys )( 1) H 4 (D (0) κ κ κ ) H 1 (D (1) Gys )( 1) H 3 (D (0) κ H 0 (D (1) Gys )( 1) κ κ ) H2 (0) (Dκ ) Res Res H 0 (D (2) κ )( 1) H 2 (D (1) Gys κ ) H 1 (D (0) κ ) Res H 1 (D (1) H 0 (D (0) κ ) Res κ ) H 0 (D (1) κ ) Res H 0 (D (2) κ ) s = 0 t = 0 Res ±1 Gys Gysin 54

Poincaré ±1 3.53 i) H i (X K, Q l ) Fil W Hi (X K, Q l ) H i (X K, Q l ) l ii) E 2 Weil G κ E s,t 1 t Tate 2 Fil W t / Fil W t 1 Ei t,t 1 G K t Fil W i) ii) d 2 : E s,t 2 E s+2,t 1 2 0 E s,t 2 E s+2,t 1 2 G κ 3.54 i) σ W + K 2d i=0 ( 1)i Tr(σ; H i (X K, Q l )) l ii) σ I K (σ 1) d+1 H i (X K, Q l ) 0 X i) G K 2d i=0 ( 1) i Tr ( σ; H i (X K, Q l ) ) = s,t = s i max{0, s} ( 1) s+t Tr ( σ; H t 2i (D (s+2i) κ, Q l ( i)) ) i max{0, s}( 1) s q n(σ)i t ( 1) t 2i Tr ( Frob n(σ) v ; H t 2i (D (s+2i) κ, Q l ) ) 3.36 l ii) 3.49 I K t l σ = σ 0 3.52 σ 0 1 Fil W i Fil W i 2 FilW 1 = 0, Fil W 2d = Hi (X K, Q l ) (σ 0 1) d+1 (H i (X K, Q l )) Fil W 2 = 0 55

3.55 E Weierstrass y 2 = x 3 + x 2 + 25 Q 5 1 H 1 (E Q5, Q l ) W Q5 P 2 Z 5 3 E : Y 2 Z = X 3 + X 2 Z + 25Z 3 E E (x, y, 5) Z 5 y 2 = x 3 + x 2 + 25 Z 5 Ẽ E ẼF 5 2 D 1, D 2 P 1 F 5 D 1 D 2 2 F 5 Ẽ E 1 E 2, 1 1 E 2,0 1 E 1,0 1 E 0,0 1 E 0,1 1 5 E 2, 1 1 = H 0 (D 1,F5 D 2,F5 )( 1) = Q l ( 1) 2, E 2,0 1 = H 2 (D 1,F5 ) H 2 (D 2,F5 ) = Q l ( 1) 2, E 1,0 1 = 0, E 0,0 1 = H 0 (D 1,F5 ) H 0 (D 2,F5 ) = Q 2 l, E 0,1 1 = H 0 (D 1,F5 D 2,F5 ) = Q 2 l σ W Q5 E 2, 1 1 E 2,0 1 5 n(σ) E 0,0 1 E 0,1 1 1 2 i=0 ( 1)i Tr(σ; H i (E Q5, Q l )) = 0 H 0 (E Q5, Q l ) = Q l, H 2 (E Q5, Q l ) = Q l ( 1) Tr(σ; H 1 (E Q5, Q l )) = 1 + 5 n(σ) det(σ; H 1 (E Q5, Q l )) = ((1 + 5 n(σ) ) 2 (1 + 5 2n(σ) ))/2 = 5 n(σ) σ H 1 (E Q5, Q l ) 1 5 n(σ) H 1 (E Q5, Q l ) Frobenius WD(H 1 (E Q5, Q l )) ss = Q l Q l ( 1) N E 2 pt P 1 F 5 Gysin H 0 (pt) H 2 (P 1 F 5 ) d 1 : E 2, 1 1 E 2,0 1 (a, b) ( a b, a + b) (a, b Q l ( 1)) d 1 : E 0,0 1 E 0,1 1 (a, b) ( a + b, a + b) (a, b Q l ) 3.53 gr W 2 H 1 (E Q5, Q l ) = E 2, 1 2 = {(a, a) a Q l ( 1)} = Q l ( 1), gr W 0 H 1 (E Q5, Q l ) = E 0,1 2 = Q 2 l /{(b, b) b Q l} = Q l, gr W i H 1 (E Q5, Q l ) = 0 (i 0, 2) 56

3.52 N : gr W 2 grw 0 (a, a) (t l (σ 0 )a, t l (σ 0 )a) N : gr W 2 gr W 0 W Q5 l H 1 (E Q5, Q l ) Weil-Deligne WD(H 1 (E Q5, Q l )) = ( Q l Q l ( 1), ( 0 1 0 0 ) ) N 3.6 N : gr W 2 gr W 0 3.6 [RZ] ([SaT2]) σ 0 I K t l (σ 0 ) Z l (1) RψQ l σ 0 1 RψQ l R i ψq l σ 0 RψQ l (perverse sheaf) Riemann-Hilbert A N A M ([SaT2, Lemma 2.3]) M i = 0 (i 0), M i = A (i 0) N(M i ) M i 2 i > 0 N i : gr M i A gr M i A RψQ l σ 0 1 γ X γ [SaT2, 2.3, 2.4] γ E 1 57

3.56 σ W + K 2d i=0 ( 1)i Tr(γ σ; H i (X K, Q l )) l γ 2d i=0 ( 1)i Tr(σ; H i (X K, γ, Q l )) l Künneth 3.41 3.54 i) 3.57 i 0 X i Künneth σ W + K Tr(γ σ; H i (X K, Q l )) l γ Tr(σ; H i (X K, γ, Q l )) l Γ i i Künneth ( 1) i Tr ( γ σ; H i (X K, Q l ) ) = 2d j=0 ( 1) j Tr ( Γ i γ σ; H j (X K, Q l ) ) γ Γ i 2.6 3.56 Künneth i i 0 H i (X K, γ, Q l ) = 0 Künneth 3.56 H i (X K, Q l ) [Yos] 3.5 X K L X L O L 3.58 X K K L O L Y Y L = XL Y 58

L Y X 1 ([DM]) K p 0 C((T )) ([KKMSD]) G L H i (X K, Q l ) = H i (Y L, Q l ) H i (X K, Q l ) G K G L G K Y Y κ S S X = S K L Y L Y S OK L K O L [TY, 3] Harris-Taylor 3.59 3.58 L K Galois L K 0 K Galois L Y OL O L [SaT2, Lemma 1.11] 3.60 de Jong [dj] X K K L O L Y f : Y L X U X f U : f 1 (U) U Y O L f U 3.61 3.59 L K Galois 3.60 59

3.62 H i (X K, Q l ) f H i (Y OK K, Q l ) f H i (X K, Q l ) deg f deg f f U Y = Y OK K = Y OL (O L OK K) = Y OL L K H i (X K, Q l ) f H i (Y K, Q l ) f H i (X K, Q l ) deg f ξ H i (X K, Q l ) f (f ξ) = f (f ξ 1) = f ( f ξ cl([y ]) ) = ξ f ( cl([y ]) ) = ξ cl(f ([Y ])) = deg f (ξ cl([x]) ) = deg f ξ L K Galois τ Gal(L/K) τ : O L O L Y Y τ Y OK K = Y OL (O L OK K) = τ Gal(L/K) Yτ L Hi (X K, Q l ) τ Gal(L/K) Hi (Y τ L, Q l) (deg f) 1 f f 3.49 G L H i (X K, Q l ) H i (X K, Q l ) Grothendieck 3.6 Grothendieck 3.53 i) 3.63 H i (X K, Q l ) l H i (X K, Q l ) G L 3.64 τ Gal(L/K) Y τ L X L Y τ L Yτ L L Y τ L Γ τ σ G L Tr ( σ; H i (X K, Q l ) ) = (deg f) 1 τ Gal(L/K) Tr ( Γ τ σ; H i (Y τ L, Q l) ) Y τ L Y O K L f id L X L f τ H i (Y OK K, Q l ) = τ Gal(L/K) Hi (Y τ L, Q l) 3.62 f τ f τ f τ f τ Tr ( σ; H i (X K, Q l ) ) = Tr ( (deg f) 1 f f σ; H i (Y OK K, Q l ) ) 60

2 Y τ L = (deg f) 1 τ Gal(L/K) Tr ( f τ f τ σ; H i (Y τ L, Q l) ) id f τ Y τ L L X L Y τ f τ id L X L L Y τ L Γ τ Γ τ = f τ f τ G L H i (X K, Q l ) τ Gal(L/K) O L Y τ H i (Y τ L, Q l) G L G L G K Y 3.58 σ W + K Y σ : O L O L Y σ Y σ L X L XL X L L X L Γ Y σ L L Y L Γ Y σ OL Y X L Galois σ : X L X L Y σ Y σ Γ Y σ OL Y σ Γ E s,t 1 σ H s+t (Y L, Q l ) σ H s+t (X K, Q l ) σ Γ E σ,s,t 1 E s,t 1 H s+t (Y σ L, Q l) H s+t (X K, Q l ) Γ id H s+t (Y L, Q l ) H s+t (X K, Q l ) E σ,s,t 1 Y σ E 1 E 1 σ κ σ Frobenius n(σ)[κ L : F p ] κ L L κ σ geom σ = σ geom H i (X K, Q l ) σ E 1 X γ 3.65 [SaT2] γ X σ W + K 61

2d i=0 ( 1)i Tr(γ σ; H i (X K, Q l )) l γ 2d i=0 ( 1)i Tr(σ; H i (X K, γ, Q l )) l 3.66 Γ S S i Künneth {H i (S F, Γ, Q l )} l p F v WD(H i (S F, Γ, Q l ) WK ) ss l p l 3.67 E Weierstrass y 2 = x 3 + x 2 + 5 Q 5 1 H 1 (E Q5, Q l ) W Q5 P 2 Z 5 3 E : Y 2 Z = X 3 + X 2 Z + 5Z 3 E K = Q 5 ( 5) E OK (x, y, 5) O K Y 3.55 Y E K Y Y F5 2 D 1, D 2 P 1 F 5 D 1 D 2 2 F 5 σ W Q5 Y Z 5 E : y 2 = x 3 + x 2 + 5 E O K E O K (x, y, 5) x U Y y = wx, 5 = tx y 2 = x 3 + x 2 + 5 x 2 w 2 = x + 1 + t 2 U = Spec O K [x, w, t]/(tx 5, x+1+t 2 w 2 ) = Spec O K [w, t]/ ( t(w 2 t 2 1) 5 ) U E O K (x, y) (w 2 t 2 1, w(w 2 t 2 1)) σ W + Q 5 \ W + K Uσ = Spec O K [w, t]/(t(w 2 t 2 1) + 5) O K f : U U σ (w, t) (w, t) U / E O K Y / E OK f id U σ E / O K σ σ U / E O K f id Y σ / E OK σ σ Y / E OK 62

61 f E 1 f = f mod 5 21 mod 5 U F5 = Spec F 5 [w, t]/(t(w 2 t 2 1)) F 5 absfrob n(σ) σ f (w, t) (w 5n(σ), t 5n(σ) ) 22 absfrob U F5 Frobenius 5 σ E 1 f (ϕ 5 )n(σ) f E 1 E 1 (ϕ 5 )n(σ) = Frob n(σ) 5 σ W + K E 1 W Q5 3.55 W Q5 l H 1 (E Q5, Q l ) 3.55 3.68 Q 5 E : y 2 = x 3 + 2x 2 + 25 H 1 (E Q5, Q l ) W Q5 3.55 E Ẽ Q 25 Q 5 2 Z 25 E 1 3.55 Frob 5 E 1 3.69 Gabber 3.60 p l 3.60 L, Y, f deg f l Z l Z/l n Z 3.60 3.6 H i (X K, γ, Q l ) ss X κ H i (X K, γ, Q l ) 3.70 H i (X K, Q l ) l i H i (X K, Q l ) Fil W 3.63 j 1 N j : gr W i+j Hi (X K, Q l ) gr W i j Hi (X K, Q l ) 21 Y = Y σ Y σ (x, y, 5) Y = Y σ 2 Y = Y σ Y 22 Y F5 = Y σ F 5, σ = Frob n(σ) 5 σ geom = ϕ n(σ) 5 63

H i (X K, γ, Q l ) H i (X K, Q l ) 3.70 3.20 H i (X K, γ, Q l ) ss H i (X K, γ, Q l ) F -ss 3.65 3.71 Γ S S i Künneth 3.70 {H i (S F, Γ, Q l )} l p F v WD(H i (S F, Γ, Q l ) WK ) F -ss l p l 3.70 Langlands [Car] [SaT3] [TY] [Car] [SaT3] [Mie] 3.70 3.19 ii) X O K i = 1 3.70 ([SGA7, Exposé I]) dim X 2 3.70 ([RZ]) K p 3.70 0 [Ste] [SaM1] p > 0 X Deligne Néron Deligne ([Ito1]) 3.70 ([SaM1], [SaM2]) X 3.70 X κ dim X = 2, i = 2 54 E 2 (a) N : gr W 3 gr W 1, (b) N 2 : gr W 4 gr W 0 Tate (a) Ker ( H 1 (D (1) κ ) Gys H 3 (D (0) κ )) Coker ( H 1 (D (0) κ (b) Ker ( H 0 (D (2) κ ) Gys H 2 (D (1) κ )) Coker ( H 0 (D (1) κ ) Res H 1 (D (1) κ )), ) Res H 0 (D (2) )) H 1 (D (1) κ ) Gys H 3 (D (0) κ ) H1 (D (0) κ ) Res H 1 (D (1) κ ) κ 64

(a) H 1 (D (1) κ ) H1 (D (1) κ ) Q l H 1 (D (0) κ ) Res H 1 (D (1) κ ) Im Res X O K Res i Pic0 (D i ) i<j Pic0 (D i D j ) Tate A Im Res = V l A H 1 (D (1) κ ) = V l ( i<j Pic0 (D i D j )) i<j Pic0 (D i D j ) L Weil V l A L A Weil L A Im Res (b) H 0 (D (2) κ ) H0 (D (2) κ ) Q l H 0 (D (0) κ ) Res H 0 (D (2) κ ) Im Res Q l Q V, W D (2), D (0) Q r : W V Φ: V V Q V, W, r, Φ H 0 (D (2) κ ), H0 (D (0) κ ), Res, Q Φ Φ r Im Res 3.72 dim X = 1 [TY], [Boy], [Dat] [Dat] Drinfeld Drinfeld 65

[BBD] [BH] [Boy] [Car] [Con] [CS] [Dat] [Del1] [Del2] [Del3] [dj] [DM] [DS] [Eke] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5 171. C. J. Bushnell and G. Henniart, The local Langlands conjecture for GL(2), Grundlehren der Mathematischen Wissenschaften, vol. 335, Springer-Verlag, Berlin, 2006. P. Boyer, Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples, Invent. Math. 177 (2009), no. 2, 239 280. H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409 468. B. Conrad, Deligne s notes on Nagata compactifications, J. Ramanujan Math. Soc. 22 (2007), no. 3, 205 257. G. Cornell and J. H. Silverman (eds.), Arithmetic geometry, Springer- Verlag, New York, 1986, Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30 August 10, 1984. J.-F. Dat, Théorie de Lubin-Tate non-abélienne et représentations elliptiques, Invent. Math. 169 (2007), no. 1, 75 152. P. Deligne, Formes modulaires et representations l-adiques, Séminaire Bourbaki, 21ème année (1968/69), Exp. No. 355, 1969., La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. (1974), no. 43, 273 307., La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. (1980), no. 52, 137 252. A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. (1996), no. 83, 51 93. P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, 75 109. P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507 530 (1975). T. Ekedahl, On the adic formalism, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 197 218. 66

[Fuj] [Ful] [Hen] [HT] [Ito1] [Ito2] K. Fujiwara, Rigid geometry, Lefschetz-Verdier trace formula and Deligne s conjecture, Invent. Math. 127 (1997), no. 3, 489 533. W. Fulton, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2, Springer-Verlag, Berlin, 1998. G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math. 139 (2000), no. 2, 439 455. M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001, With an appendix by Vladimir G. Berkovich. T. Ito, Weight-monodromy conjecture over equal characteristic local fields, Amer. J. Math. 127 (2005), no. 3, 647 658. (2006) 2008 [Ive] B. Iversen, Cohomology of sheaves, Universitext, Springer-Verlag, Berlin, 1986. [Jan] U. Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), no. 2, 207 245. [KKMSD] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer- Verlag, Berlin, 1973. [Kle] S. L. Kleiman, Algebraic cycles and the Weil conjectures, Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968, pp. 359 386. [KS] M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292, Springer-Verlag, Berlin, 1994, With a chapter in French by Christian Houzel. [KW] R. Kiehl and R. Weissauer, Weil conjectures, perverse sheaves and l adic Fourier transform, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 42, Springer-Verlag, Berlin, 2001. [Laf] L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002), no. 1, 1 241. [Lüt] W. Lütkebohmert, On compactification of schemes, Manuscripta Math. 80 (1993), no. 1, 95 111. 67

[Mie] R = T Tate Serre 2009 [Mum] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay, 1970. [Nag1] M. Nagata, Imbedding of an abstract variety in a complete variety, J. Math. Kyoto Univ. 2 (1962), 1 10. [Nag2], A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ. 3 (1963), 89 102. [RZ] M. Rapoport and Th. Zink, Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik, Invent. Math. 68 (1982), no. 1, 21 101. [SaM1] M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849 995 (1989). [SaM2] M. Saito, Monodromy filtration and positivity, preprint, 2000. [SaT1] T. Saito, Modular forms and p-adic Hodge theory, Invent. Math. 129 (1997), no. 3, 607 620. [SaT2] T. Saito, Weight spectral sequences and independence of l, J. Inst. Math. Jussieu 2 (2003), no. 4, 583 634. [SaT3], Hilbert modular forms and p-adic Hodge theory, to appear in Compositio Mathematica. [Sch1] A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), no. 2, 419 430. [Sch2], Classical motives, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 163 187. [Ser1] J.-P. Serre, Propriétés galoisiennes des points d ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259 331. [Ser2], Cohomologie galoisienne, Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994. [Sil] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. [ST] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492 517. [Ste] J. Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), no. 3, 229 257. [Tay] R. Taylor, Galois representations, Ann. Fac. Sci. Toulouse Math. (6) 68

[TY] [Var] [Yos] [EGA4] [SGA4] [SGA4 1 2 ] [SGA5] [SGA7] 13 (2004), no. 1, 73 119. R. Taylor and T. Yoshida, Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20 (2007), no. 2, 467 493. Y. Varshavsky, Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara, Geom. Funct. Anal. 17 (2007), no. 1, 271 319. T. Yoshida, Weight spectral sequence and Hecke correspondence on Shimura varieties, Ph.D. thesis, Harvard University, 2006. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas., Inst. Hautes Études Sci. Publ. Math. no. 20, 24, 28, 32. Théorie des topos et cohomologie étale des schémas, Lecture Notes in Mathematics, Vol. 269, 270, 305. P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, Vol. 569, Springer-Verlag, Berlin. Cohomologie l-adique et fonctions L, Lecture Notes in Mathematics, Vol. 589, Springer-Verlag, Berlin. Groupes de monodromie en géométrie algébrique, Lecture Notes in Mathematics, Vol. 288, 340, Springer-Verlag, Berlin. 69