Similar documents

TOP URL 1

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

Gmech08.dvi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

untitled


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

量子力学 問題

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

TOP URL 1

Untitled

Ł\”ƒ-2005

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

第90回日本感染症学会学術講演会抄録(I)

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

untitled

基礎数学I

Z: Q: R: C:

Microsoft Word - 11問題表紙(選択).docx

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

( )

陦ィ邏・2

main.dvi

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

吸収分光.PDF

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


プログラム

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)


untitled

2000年度『数学展望 I』講義録

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

( ) ( )

3.300 m m m m m m 0 m m m 0 m 0 m m m he m T m 1.50 m N/ N

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

meiji_resume_1.PDF

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

pdf

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

* 2

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

DVIOUT-fujin

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

untitled

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

all.dvi

December 28, 2018

30

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

untitled

untitled


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

プログラム

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

QMII_10.dvi

LLG-R8.Nisus.pdf

振動と波動

CVMに基づくNi-Al合金の


untitled

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

支持力計算法.PDF

untitled

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

Note.tex 2008/09/19( )

III,..

dvipsj.8449.dvi

Transcription:

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa

THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600 2000 5 % 1 % 0.1 % THBV3_0403JB

40 40 70 120 60 200 525 550 550 150 µ

100M 200S 200M 400K 400U 400S 401K 500K(S-20) 500U 500S 501K(S-25) 502K 700K(S-1) UV 95 95 95 40 150 150 150 200 230 20 µ

THBV3_0404JA

THBV3_0405JA Sk = I K L P (A/W)

h c η (%) = Sk = λ e h: 6.63 10-34 J s c: 3.00 10 8 m s -1 e: 1.60 10-19 C 1240 Sk 100 (%) λ

THBV3_0406JA THBV3_0407JA

THBV3_0408JA

THBV3_0409JA

THBV3_0410JA

THBV3_0411JA

THBV3_0412JA δ = a E k δ 1 = I d1 I K δ n = I dn I d(n-1) Ip = Ik α δ 1 δ 2 δ n Ip = α δ 1 δ 2 δ n Ik

µ = α δ 1 δ 2 δ n V µ = (a E k ) n = a n ( ) kn = A V kn n+1 THBV3_0413JA

THBV3_0414JA

THBV3_0415JA THBV3_0416JA

THBV3_0417JA THBV3_0418JA

FWHM FWTM THBV3_0419JA

THBV3_0420JA THBV3_0421JA

THBV3_0422JA C.R.T. = (τ 1 2 +τ 2 2 ) 1/2

C 1 µa 1 µa 0.1 µa 0.01 µa 10 µa 1 µa 0.1 µa 0.1 µa 0.1 µa

THBV3_0423JA

THBV3_0424JA (Ip 0 (Ip 1 +Ip 2 +Ip 3 +Ip 4 ) 1) 100 (%) Ip 0 = Ip 1 +Ip 2 +Ip 3 +Ip 4

R=100 kω THBV3_0425JA Ip 02 Ip 01 = 4 Ip 2 Ip 1 Ip 02 Ip 01 (Ip 2 Ip 1)-(Ip 02 Ip 01) (Ip 02 Ip 01) 100(%) (Ip 2 Ip 1 ) = (Ip 02 Ip 01 )

THBV3_0426JA THBV3_0427JA

THBV3_0428JAa THBV3_0428JAb

THBV3_0429JA

THBV3_0430JA THBV3_0431JA THBV3_0432JA

THBV3_0433JA

THBV3_0434JA

PMTR6249 1000 V 1 µa THBV3_0435JA

1 µa THBV3_0436JA H L = ((I MAX -I MIN ) Ii) 100 (%)

0.1 µa THBV3_0437JA H = ((I MAX I MIN) Ii) 100 (%)

THBV3_0438JA

i S = AT 5/4 e (-eψ/kt)

THBV3_0439JA

THBV3_0440JA

EADCI (lm) = (A) (A/lm)

THBV3_0441JA ENI = (2e Id µ B) 1/2 S (W) e: Id: µ: B: S:

THBV3_0442JA SN= I p i p+d SN I p i p F= (S/N) 2 in (S/N) 2 out

F= 1+1 δ 1 +1 δ 1 δ 2 + +1 δ 1 δ 2 δ n F δ (δ-1) i p = µ(2 e I k α B F) 1/2 i p = µ{2 e I k α B(1+1 δ 1 +1 δ 1 δ 2 + +1 δ 1 δ 2 δ n )} 1/2 I p = I k α µ SN = I p i p I = ( K α 1 ) 1/2 2eB 1+1 δ 1 +1 δ 1 δ 2 + +1 δ 1 δ 2 δ n I SN K 1 ( ) 1/2 2eB δ (δ-1) SN= (I k 2eB) 1/2 1.75 10 3 I k (µa) B (MHz)

SN= I k (2eB δ (δ-1) (I k +2I d )+N 2 A) 1/2 I SN= k (2eB δ (δ-1) (I k+2i d)) 1/2 η I k : λ: c: P: δ: I d : e: h: η: B: N A :

SN= I k = (2 e (I k +2 I d )F B) 1/2 I k µ (2e(I ph +2I d )FB µ 2 ) 1/2 = I p 2e(I p +2I da )µfb = S p P i 2e(S p Pi+2I da )µfb S p Pi= 2e(S p Pi+2I da )µfb (S p Pi) 2 2e(S p Pi+2I da )µfb= 0 S p Pi= ( 2eSpµFB) ± ( 2eSpµFB)2 4Sp 2 ( 4eIdaµFB) 2Sp 2 eµfb Pi= + Sp (eµfb) 2 + 4eIdaµFB Sp 10-9 10-10 10-11 10-12 10-13 10-14 10-15 10 6 10 4 A/W A/W ENI 10-16 10-17 10-2 10-1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 THBV3_0444JA

THBV3_0445JA I I Iθ = I S cos 2 θ+i P sin 2 θ = (I P +I S )(1 P I S cos 2 θ) 2 I P +I S I S : I P : I I O = P+I S, P = 2 I P I S I P+I S θ = I O (1 P cos 2 θ)

THBV3_0446JA THBV3_0447JA

THBV3_0448JA