a a apier sin 0; 000; 000 = 0 7 sin 0 0; 000; 000 a = 0 7 ;r = 0: = 0 7 a n =0 7 ( 0 7 ) n n =0; ; 2; 3; n =0; ; 2; 3; ; 00 a n+ =0 7 ( 0 7 ) n

Similar documents
i

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

no35.dvi


OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

- II

6. Euler x

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

高等学校学習指導要領

高等学校学習指導要領

応力とひずみ.ppt

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x


untitled

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

(2000 )

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

slide1.dvi

body.dvi

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

29

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

.1 1,... ( )

Microsoft Word - 触ってみよう、Maximaに2.doc

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

xyr x y r x y r u u

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

= = = = = = 1, 000, 000, 000, = = 2 2 = = = = a,

( )


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

数学の基礎訓練I

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

untitled

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α


I

DVIOUT

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

webkaitou.dvi

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

( ) x y f(x, y) = ax

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

untitled

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (



40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

熊本県数学問題正解

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

. p.1/15

A A p.1/16

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

04.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

*3 i 9 (1,) i (i,) (1,) 9 (i,) i i 2 1 ( 1, ) (1,) 18 2 i, 2 i i r 3r + 4i 1 i 1 i *4 1 i 9 i 1 1 i i 3 9 +

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

2011de.dvi

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

main.dvi

Transcription:

apier John apier(550-67) 0 2 3 4 5 6 7 8 9 0 2 4 8 6 32 64 28 256 52 024 4 32 = 28 2+5=7 2 n n 2 n 2 m n + m a 0 ;a ;a 2 ;a 3 ; a = a 0 ; r = a =a 0 = a 2 =a = a 3 =a 2 = n a n a n = ar n a r 2 a m = ar m ;a n = ar n a m a n = a(ar n+m ) a 0 ;a ;a 2 ;a 3 ;, m; n m + n a a a 0 a =0 p a p a p p a p 2 a r a a r

a a apier sin 0; 000; 000 = 0 7 sin 0 0; 000; 000 a = 0 7 ;r = 0:9999999 = 0 7 a n =0 7 ( 0 7 ) n n =0; ; 2; 3; n =0; ; 2; 3; ; 00 a n+ =0 7 ( 0 7 ) n ( 0 7 )=a n 0 7 a n 00000000000000 0000000 99999990000000 09999999 9999998000000 09999998 99999970000003 99999000004950 0; ; 2; 3; ; 00 logarithms(= ratio numbers) 9999900:0004950 logarithm 00 log 9999900:0004950 = 00 x =0 7 ( 0 7 ) y log x = y 0; 000; 000 5; 000; 000 6; 900; 000 logarithms x = ar m ;y = ar n y=x = r n m logarithms 9999900:0004950 ' 9999900 = 0 5 a =0 7 ;r = 0 5 0 7 ( 0 5 ) r ; r =0; ; 2; 3; ; 50 2

0000000000000 00000000 9999900000000 99999000 999980000000 99998000 9999700003000 999500224804 log 999500:224804 ' 50 00 = 5; 000: 999500:224804 ' 9995000 = 0000000 5000 = 0000000 5000 0000000 0 7 ( =2000) p ;p = 0; ; 2; 3; ; 20 p = 20 9900473:5780 p = 2 9895523:34 log 99000473:5780 ' 20 5000 = 00000: 9900473:5789 ' 9900000 = 0000000 00, 0 7 ( =00) q ;q =0; ; 2; 3; 68; a pq =0 7 p q ; p =0; ; 2 20; q =0; ; 2 68 2000 00 p q a pq 0000000:0000 9900000:0000 5048858:8900 9995000:0000 9895050:0000 5046334:4605 9990002:5000 989002:4750 50438:2932 9900473:5780 980468:8423 4998609:4034 5; 000; 000 a pq log a pq = plog 9995000 + qlog 9900000 logarithms log 9995000 ' 500:24506; log 9900000 ' 05026:5: 3

apier log 5000000 ' 693472:2 log 5000000 = 693247:8: apier ar n n b ar n bn apier Jost Burgi b =0;a =0 8 ;r =+0 4 apier apier Burgi 0 0 7 0 0 8 0 7 ( 0 7 ) 0 0 8 ( 0 4 ) 2 0 7 ( 0 7 ) 2 0 2 0 8 ( 0 4 ) 2 3 0 7 ( 0 7 ) 3 0 3 0 8 ( 0 4 ) 3 n 0 7 ( 0 7 ) n 0 n 0 8 ( 0 4 ) n ( + 0 4 ) 23;027 ' 0 Burgi n =23; 027 a; b 0 Burgi a =;b=0 4 Bog x = n 0 4 () x =( 0 4 ) n Bog x x 0 0 4 ( + 0 4 ) 2 0 4 ( + 0 4 ) 2 n 0 4 ( + 0 4 ) n n 0 4 = m Bog x = m () x = h (+0 4 ) 04i m : 4

0 4 0 p Bog x = m () x = h ( + 0 p ) 0pi m : ( + 0 4 ) 04 =2:78: ( + =k) k =[(k +)=k] k ;k =; 2; 3; 2 3 2 4 5 6 7 ; ; ; ; ; ; 2 3 3 4 4 5 5 6 6 Euler e e = lim + k =2:782882::: k! k log x = y () x = e y log x x a log a x = y () x = a y log a x a x Leonhard Euler(707-783) Henry Briggs apier 0, 0 log 0 4 20,000 90,000 00,000 (624) Adian Vlacq 00,000 0 628 apier P; L P 0 7 P 0 O P 0 O L L 0 L 0 P t OP x L 0 7 t L 0 L y x y og x = y x =0 7 ( 0 7 ) n og 0 7 ( 0 7 ) n ' n apier dx dt = x; y =07 t: 5

y = og x =0 7 log 07 x : apier og 0 7 ( 0 7 ) n = n ψ+ 0 7 + 0 4 2 3! + ' :00000005 n: Gregory St Vincent 647 x [a; b] y = =x S(a; b) t>0 S(ta; tb) =S(a; b): [a; b] n a = x 0 <x <x 2 < <x n = b; x i x i = b a ; i =; 2; n n [x i ;x i ] =x i S n (a; b) ta = tx 0 <tx <tx 2 < <tx n = tb [ta; tb] n S n (ta; tb) nx tb ta nx b a S n (ta; tb) = = = S n (a; b): tx i n x i n i= n S n (a; b) S(a; b) S n (ta; tb) S(ta; tb) i= S(ta; tb) = lim n! S n(ta; tb) = lim n! S n(a; b) =S(a; b): Vincent AA de Sarasa ( S(;x) x L(x) = S(x; ) 0 <x< <x<y L(xy) =L(x)+L(y) L(xy) =S(; xy)=s(; x)+s(x; xy) =S(; x)+s(; y)=l(x)+l(y): 6

x 3 L(x) =logx Euler ewton, Mercator ewton (642-727) 667 y = x + (x > ) [0;x] A( + x) S(; +x) x + x 2 +x ) +x x x x 2 x 2 x 2 + x 3 ewton A( + x) = = y = +x = x + x2 x 3 + : Z x 0 Z x 0 +x dx dx Z x 0 3 x dx + Z x = x x2 2 + x 3 x 4 4 + : 0 x 2 dx Z x A(( + x)( + y)) = A( + x)+a( + y) ψ! +x A = A( + x) A( + y): +y 0 x 3 dx + x = ±0:; ±0:2; A(0:8);A(0:9);A(:);A(:2) 57 2=(:2 :2)=(0:8 0:9) A(2) = 2A(:2) A(0:8) A(0:9) 7

A(2) A(3);A(5);A();A(0);A(00); ewton icolas Mercator (620-687) 668 log( + x) =x x2 2 + x 3 3 x 4 4 + : Wallis(66-703) 668 Mercator, [0;x] n h = x=n y ==( + x) [0;x], =( + x) A( + x) ' h + h A( + x) n X j= h +jh +jh = jh +(jh)2 (jh) 3 + : ' nh h 2 [ + 2 + +(n )] + h 3 [ 2 +2 2 + +(n ) 2 ] = x x2 3 x [ + 2 + +(n )] + 2 n n 3 [2 +2 2 + +(n ) 2 ] : Wallis 656 n! lim k +2 k + + n k = n k+ k + n! Mercator Wallis k» 0 Wallis log( + x) x< y ==x [x ;x 2 ] log(x 2 =x ) Vincent, Sarasa 660 Mercator 668 Euler Leonhard Euler(707-783) John(=Jean=Johann) Bernoulli (667-748) (727-74,766-783) (74-766) 8

Euler Euler, Euler a x log a x = y a y = x y Euler a 0 =, ffl a ffl =+kffl k ffl x = x=ffl a x = a ffl =(a ffl ) =(+kffl) = a x = lim n! ψ! + kx n n ψ! + kx : ψ! + kx ψ! ψ! 2 ψ! 3 kx ( ) kx ( )( 2) kx =+ + + + 2! 3! =+kx + 2! k 2 x 2 + 3! 2 k 3 x 3 + : 0= = 2 = ψ a x = n! lim + kx n! n =+ kx! + k 2! 2 x 2 + k3 x 3 3! + : a k x = ψ! a = n! lim + k n =+ k n! + k 2 2! + k 3 3! + : Euler e k = a e = n! lim + n =+ n! + 2! + 3! + 9

23 e ' 2:782882845904523536028: e x = n! lim + x n x =+ n! + x 2 2! + x 3 3! + : Euler log e ( + x) =y, +x = e y : +x = e y = + y : ( + x) = =+(y=) y = ewton ( + x) = =+ x + h ( + x) = i : 2! x 2 + = =0 2 y = x + 2! x2 + ( )( 2) x 3 + : 3! y =log e ( + x) =x x2 2 + x 3 3 : 3! x 3 + e log e ( + x) y ==( + x) [0;x] A( + x) Euler R sin A 2A cos A Euler x sin x; cos x sin 2 x +cos 2 x = sin(x ± y) = sin x cos y ± cos x sin y; cos(x ± y) = cos x cos y sin x sin y De Moivre (cos z + i sin z) n = cos nz + i sin nz i = p 0

x x ffl = x= x = ffl: De Moivre z = ffl; n = cos x + i sin x =cosffl + i sin ffl = (cos ffl + i sin ffl) : ffl cos ffl =; sin ffl = ffl (cos ffl + i sin ffl) =(+iffl) = + ix = e ix : Euler cos x + i sin x = e ix e ix Euler x x z = x + iy e z = e x+iy = e x e iy = e x (cos y + i sin y): e z e x y w = e z log w = z w C H Edwards, Jr, "The Historical Development of the Calculus", Springer- Verlag, 979