I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

Similar documents
I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

0104.pages

0104.pages

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s



di-problem.dvi

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

di-problem.dvi

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

数学の基礎訓練I

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

Chap10.dvi

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d


= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

( ) ( )

Note.tex 2008/09/19( )

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

i

K E N Z OU

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(


9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)


e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

70の法則

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Z: Q: R: C: sin 6 5 ζ a, b

. p.1/15

A A p.1/16

70 : 20 : A B (20 ) (30 ) 50 1

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P

高等学校学習指導要領

高等学校学習指導要領

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n


29

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

Untitled


i 18 2H 2 + O 2 2H 2 + ( ) 3K

1

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1


Chap2

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

1 I p2/30

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

II 1 II 2012 II Gauss-Bonnet II

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

(1) (2) (3) (4) 1

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

II 2 II

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re


Transcription:

I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. :

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π sin cos sin + cos = sin α ± β = sin α cos β ± cos α sin β cos α ± β = cos α cos β sin α sin β tan cotangent : cot = cos sin = tan secant : sec = cos cosecant : cosec = sin co 7 tan cot cosec sec e : eponential function = 8 eponent y = e : = ep : e =.78 : 8 y = ep sinh = cosh = tanh = hyperbolic function e e : e +e : sinh cosh = e e e +e : cosh sinh sinh n sinh n 9 sinh cosh tanh? =? 4 y = sin y = cos sinh cosh 5 π sin π cos cosh sinh = 6 sin = 4 sin + 4 sin sin 4 = 8 cos 4 cos + 8 cos, cos 4 tangent : tan = sin cos sinh α ± β = sinh α cosh β ± cosh α sinh β cosh α ± β = cosh α cosh β ± sinh α sinh β cosh sinh =, sinh α ± β =, cosh α ± β =

I No. log logarithmic function y = e < <, y > = log y y >, < < inverse trigonometric functions II = arcsin y y = sin π π, y = arccos y y = cos π, y = arctan y y = tan π < < π, < y < base a> y = a = log a y e log ln log log ln sin y Sin y sin y arcsin y arc Sin sin π 6 = arcsin = arccos = arctan π 4 = arcsin = arccos = arctan a, b, c,, y > log a y = log a + log a y log a y = y log a log a b = log c b log c a a a y = a +y a y = a y a >, b >. log a. log a a. log a a 4. log /a b log a b 5. log b a log a b 6. log a b log a b 7. log a b loga b 8. log 8 9. log 8 6. log 7 8 e a = e log e a log a = log e log e a. arcsin. arcsin. arccos 4. arccos 5. arctan 6. arctan 7. sin arccos 8. cos arcsin

I No. sin arccos y = sinh = arcsinh y 5 cos arctan y = cosh = arccosh y y = tanh = arctanh y tan arcsin log : 4 arcsin = arctan arcsinh = log + +, < < 5 arccos = arcsin arccosh = log ±, 4 6 = ± log + 6 arctan = arccos 6 7 cos arcsin arcsin arctanh = log +, < < 4 8 arcsin + arcsin arcsinh arccosh arctanh = arcsin [ π, π ] 9 arctan + arctan arcsin + arcsin sin arcsin 4 cos arccos 6 arcsin π...................... 4 arcsin................ π 5 arccos 6 arccos....................................... π 4 4 π 7 arctan π...................... 8 arctan................ π 9 sin arctan 4 cos arcsin............ tan arccos arccos 5 arccos 4 5............ 5 5......... = arccos. = 4 5. 4 differential:, differentiation:, derivative: f = df = lim f + h f h h. f + g = f + g. fg = f g + fg fgh = f gh + fg h + fgh f f f f 4 = + + +. f g = f g fg g 4. chain rule df g = df dg dg f g = f g g 5. dy = f = dy f f 4 f/g = fhg, hy = y

I No.4 derivatives of basic functions. s = s s. e = e. log = log = 4. sin = cos, cos = sin 5. tan = cos, cot = sin 6. arcsin = 7. arccos = 8. arctan = + 9. sinh = cosh, cosh = sinh. tanh =. arcsinh = cosh, coth = sinh +. arccosh = ±. arctanh = 9 9 f = f g fg 8,9 g g 4 5 cos + sin = 9 cosh sinh = dy = dy 4 4 6 7 5 5 8 6 9 7 7 differentiation of composite functions 8.. 4 cos5 6. sin arcsin 4. arccos cos 5. arctansin 6. ep 5 7. log 4 + + + 5 8...... 9 9. + + /........... + + ++ /........................ +............................. sin........................ cos. sin cos.. cos cos sin sin 4. 5. 8 8................ + + 9 arctan +.... arctan + + 6. sin arccos............... 7. log + log + log. 8. 9. cos arccos +log +log+log +............... + +. 8 + + +4 +. log + +.......... + + + + 8

I No.5 differentiation of to the e. a = a a. a = a log a. = 4. f g = log ep a > a = e log a > > = e log f, g f g f, g, f, g f > 4 logarithmic differentiation df = f d log f = log = log = log + f = {f } p {f n} p n { } df = f f p f + + p f n n f n f = + 4 f = + + 4 + 4 f = F u, v = u v, u =, v = f = F u, v. df F u, v du = u = uv u + uv = vu v + u v log u = + log = log + F u, v dv + 5 a bc a bc a b c = a bc. e.. 4. log 5. log 6. log log 7. 8. 9... e................................................................ 4. e arctan.................. 5. arctan.................. e log log + + e arctan log + arctan 6. arctan..... arctan log + arctan + 7. sin................... cos 8. sin......... log + cos 9. sin sin................................ sin cos log + sin cos sin. sin................... sin cos. sin.. sin logsin + cot. sin sin..................................... sin sin cos logsin +. sin sin sin... sin sin sin +sin cos logsin logsin + + cot

I No.6 high-order differentials d df f = = f d d f = d f = f n d d n f = dn f = f n n n d n d n f, f n,,. +. log. arcsin 4. sinh 5. tan 6. e 4 : cosh, cosh + 4 sinh, 5 : 8 cosh + sinh. cos, sin cos, 6 4 cos cos 4 6 : e, e, 4 e. n nth order differentials e n = e sin n = sin + nπ cos n = cos + nπ. of product of functions Leibniz n {fg} n n = f n i g i i i= n n! = i n C i = n i! i! :!=,!=,!= =,!= =6 : fg = f g + fg fg = f g + f g + fg fg = f g + f g + f g + fg fg = f g + 4f g + 6f g + 4f g + fg n n +! 6 6 n n. e n. e n. 4. 5. 6. n sin + e n n + cos + a n n k k = e n = n e n + n e n n n. e n. e n. sin n 4. n 5. n 6. sin n 5 : n n!! n. n!! n double factorial, factorial n n!! = nn n 4 n n!! = nn n 4 6 : n cos + nπ. sin = cos. n = + 9e n = 7 sin + 7 cos sin n = cos n = sin n = cos n cos n = sin n = cos n = sin n sin + nπ cos + nπ { } 4 : n e + + n + + nn 4 5 : { n n } cos + nπ +n{ n n + } sin + nπ { 6 : n! + n + a + nn + a}

I No.7 Taylor epansin f = fa + f a! a + f a! a + + f n a n! a n + R n+ R n+ = f n+ ξ n +! an+ ξ a lim n R n+ = f = n= f n a a n n! a = R n+ O n+ o n. f = f+f + f! + f +O 4! arctan = + O 4 arctan 4 O 5 No.8 arctan = + 5 5 7 7 + 9 9 + = arctan = π 4 π = 4 + 5 7 + 9 + 5 + 7 4 f = O 4 f = sin + f = e cos [] e = + +! +! + 4 4! + 5 5! + 6 6! + [] sin =! [] cos =! [4] log + = [5] + s = s k + 4 4! + 5 5! 6 6! + + 4 4 + 5 5 6 6 + s k k, s =, k= = ss s s k + arctan [] [] [4],[5] < f = arctan f = f = + f = 5 e i = cos + i sin f = i i = + f = Euler f = + f = k! e i+y = e i e iy cos + y + i sin + y = cos +i sin cos y+i sin y = cos cos y sin sin y+ isin cos y+cos sin y, cos + y = cos cos y sin sin y, sin + y = sin cos y + cos sin y sin cos 6 = 4 6 + / 7 4 + / [5] f = e f = + + 5 + 8 + O 4 4 f = + e f = + 4 + + 7 84 + O 4 8 + : + 8 + 6 5 8 4 + O 5 9 + : + 8 5 6 + 5 8 4 +O 5 + : + + + + 4 + O 5

I No.8 cosh = e + e e = + + + 6 + 4 4 + 5 + 6 7 + e = + 6 + 4 4 5 + 6 7 + cosh = + + 4 4 + 6 7 + arctanh = + log log ± 6 = + + 4 6 + + 4n 4n+ + [, ] arctan = + 5 5 7 7 + + 4n+ 4n+ 4n+ 4n+ + 5 / arcsin Taylor. 6 = Taylor 4.. cos log + log + = 8 + O + + O 4 = + + + 4 8 + O 4 = + 4 + O 4 e sin. sin. + / 4. + + / 5. cos 6. log + + 7. log cos sin e sin e sin = + + 6 O5 + + 6 O5 + 6 + O + 4 + O 4 + O 5., + 6 O5 = 4 + O5, + O = + O 5, + O 4 = 4 + O 6 e sin = + + 8 4 + O 5 e cos + cos +! cos + cos = + sin Taylor sin =! + 5 5! 7 4n+ 7! + + 4n+! 4n+ 4n+! + cos Taylor cos =! + 4 4! 6 4n 6! + + 4n! 4n+ 4n+! +. 4 e Taylor. e = e 8. 9. e + e sin. arcsinh. tan. e e 6 : log + + = + + 4 4 + 5 5 + 7 : cossin = + 5 4 4 + O 6 logcossin = + 4 + O 6 8 : e + = + 5 8 + 65 4 4 6 6 5 + 9 : e sin = + 5 4 4 + 5 + 9 7 6 + : arcsinh = dt/ + t, arcsinh = 6 + 4 5 + + n n+ n+ + = n= n n!! n!!n+ n+,,!! =!! =. : tan = + + 5 5 + 7 5 7 + 6 85 9 + sin / cos, arctan. : e e = e + e + e + 5 6 e + 5 8 e4 + e5 +

I No.9 limits of indeterminate forms [] [],, [],, log [] [], [] []. L Hospital s rule a f, g ± f lim a g = lim f a g. a ±. i. ii,, limf g fg /g. Internet Johann Bernoulli. Hospital, Bernoulli partial differentiation f, y f, y : y. f. : y. f y. f, y = f, y f, y = f, y f, y = f, y f, y = f, y f. f y. f y. f yy. f y = f y. f, y = 4 + y + y, f = 4 + 6y + y, f y = + 4y, f = 4 + 6y + y = + 6y f y = 4 + 6y + y = 6 + 4y f y = + 4y = 6 + 4y f yy = + 4y = 4 lim log.. lim log. +. lim cos. sin +, cos sin. 4 lim +.., A > A = eplog A. 5 y = >. +., y. 6 y = / >. +.,, y.. 7 f, y = sin y + f, f y. t = y + f d = dt sin t t. 8 f, y = y f, f y, f, f y, f y, f yy. a = a a, a = a log a. = a +, y = b + y, f, y = f a,b+f a,b +f y a,b y f a,b + f y a,b y + f yy a,b y +R +! f, y, f = { f y =, f f yy fy > f >. <. f f yy fy <, saddle point 9 f, y = + y + y +, y. f, y = y, y.

I No. total differential formula = t, y = yt, z = z, y dz dt = z dt + z dy dt. dz = d z t, yt, = d t, dy = d yt dt dt dt dt dt dt z = z z, y, = z, y., dt z : dz = z z + dy = u, v, y = yu, v z z u = u u z z z = z u, v, yu, v, z = z, y., z. u u u =,,... r [cm], m [g], ρ [g/cm ] ρ = m 4πr, r cm cm/s r=, dr =. m 5 g 8 g/s dt m=5, dm =8. dt ρ [g/cm s] dρ. dt π.4.. R V W = V. R R, V, W W, W R, V, R, V., V/V =., R/R =.5, W/W. V + V W = R+ R V, R, R, V., V, R W/W. r, h V = πr h. r r, h h. r=. cm, h=. cm, r.5 cm, h.5 cm, V cm., V V/V, r h. πr + r h + h πr h,, r h. V 5 %, 9% r, 6 % h. 4 = e u cos v, y = e u sin v. i T=. u u u, v ii, u, v, u,. iii + u, v, u,. 5 u = log + y, v = arctan y. i T =. u u, y ii u,, y,,. iii u +, y,,. 6 4 5,., T T.,,. 7 = r cos θ, y = r sin θ r = + y. 8 = u v, u, v, θ = arctan y, 4 6 u,. y = uv, +