Similar documents
A9RF112.tmp.pdf

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

untitled

行列代数2010A

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

[ ] Table

Chapter n m A 1, A 2,...A n (A k = [a 1 k, a2 k,..., am k ]) n n m m m 2 3 Z 2 Z = w 1 X 1 + w 2 X 2 (5.1) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

untitled

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

熊本県数学問題正解

/02/18

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

A

function2.pdf


29

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1


高等学校学習指導要領解説 数学編

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

( )

all.dvi

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

) 9 81

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

( ) ± = 2018

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

_TZ_4797-haus-local

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

Gmech08.dvi

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

Talk/7Akita-cont.tex Dated: 7/Feb/ Fibonacci Quartery L n = i n T n i/).) F n = i n U n i/).6).),.6) n = 7, F 7 = F n = cos π ) cos π 7 7 ) F = 8 [n )

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

DVIOUT-HYOU

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

数学の基礎訓練I

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

Note.tex 2008/09/19( )

I

II

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

mugensho.dvi

行列代数2010A

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

n ( (

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

高校生の就職への数学II


さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

DVIOUT-講

noted by Kazuma MATSUDA (force) (mechanics) (statics) (dynamics) O F OA O (point of application) (line of action) (vector) F F F

untitled

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

振動と波動

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

入試の軌跡

DVIOUT

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

さくらの個別指導 ( さくら教育研究所 ) A AB A B A B A AB AB AB B

A

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y


Part () () Γ Part ,

26.fx95MS_Etype_J-cover_SA0311D

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

example2_time.eps

( ) x y f(x, y) = ax

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

Jacobson Prime Avoidance

,2,4

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2


, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

1

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

agora04.dvi

36 th IChO : - 3 ( ) , G O O D L U C K final 1

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

Transcription:

ver 0.3

Chapter 0 0.1 () 0( ) 0.2 3

4 CHAPTER 0. http://www.jaist.ac.jp/~t-yama/k116 0.3 50% ( Wikipedia ) ( ) 0.4! 2006

0.4. 5 MIT OCW ( ) MIT Open Courseware MIT (Massachusetts Institute of Technology) Open Courseware MIT Creative Commons Lisence MIT OCW http://ocw.mit.edu (transcription)

Chapter 1 1 1 1m 1 1 2 1.1 ( 1 ) 1 60 2 7

8 CHAPTER 1. 0-1/3=0.3333... π,e, 2 = 1.4142135..., 3 = 1.7320508.. i = 1 ( ) ( ) 2 : 1 + 2i ( ) ( )

1.1. 9 1.1.1 1 ( ) Figure 1.1: = 1 1/10 π = 3.141592... 3.1 1/10 π 7 a < b( a 0) a < b 6 < 7 < 8 6 = 2 3 8 = 2 2 2 = 2 2 ( 2 2 = 2 2 = 2) 2 = 1.41 3 = 1.73 6 = 2.44, 8 = 2.82 7 7 [ 6, 8] = [2.44, 2.82] 2.44 2 = 6 2 0 < a < b a 2 < b 2 2.6 2 = 6.76, 2.7 2 = 7.29 2.65 2.67 2 7

10 CHAPTER 1. octave-3.0.0:16> 2.65^2 ans = 7.0225 octave-3.0.0:17> 2.62^2 ans = 6.8644 octave-3.0.0:18> 2.63^2 ans = 6.9169 octave-3.0.0:19> 2.64^2 ans = 6.9696 octave-3.0.0:20> octave-3.0.0:20> octave-3.0.0:20> 2.65^2 ans = 7.0225 octave-3.0.0:21> 2.63^2 ans = 6.9169 octave-3.0.0:22> 2.64^2 ans = 6.9696 octave-3.0.0:23> 2.645^2 ans = 6.9960 octave-3.0.0:24> 2.648^2 ans = 7.0119 octave-3.0.0:25> 2.646^2 ans = 7.0013 octave-3.0.0:26> 2.6455^2 ans = 6.9987 octave-3.0.0:27> 2.6458^2 ans = 7.0003 octave-3.0.0:28> 2.6457^2 ans = 6.9997 octave-3.0.0:29> 2.6458^2 ans = 7.0003 3 2.646 PC Octave

1.1. 11 1.1.2 Octave Octave Octave octave-3.0.0:> (3+4+5)/100 ans = 0.12000 octave-3.0.0:> (3+4)+5/100 ans = 7.0500 octave-3.0.0:> sqrt(3) ans = 1.7321 () sqrt(x) x 1. 5 2. 3. 4. 10 3

12 CHAPTER 1. 1.1.3 (number theory) 3 n x n + y n = z n (x, y, z) (n = 2 3 2 + 4 2 = 5 2 ) 2000 :Simon Singh, Fermat s Enigma: The Epic Quest to Solve the World s Greatest Mathematical Problem Anchor Books 1998 (paperback) 2008 : David Wells Prime Numbers The Most Mysterious Figures in Math John Wiley & Sons 2005 ( ) :Simon Singh, The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography Anchor Books 2000 (paperback)

1.1. 13 1.1.4 a b c d 1. a = b, a = c b = c 2. a = b, c = d a + c = b + d 3. a = b, c = d a c = b d ( ) ( ) 4. a = b, c = d ac = bd ( ) 5. a = b, c = d c 0 a c = b d 6. a + (b + c) = (a + b) + c 7. a (b c) = (a b) c 8. a (b + c) = a b + a c 1. 2 2. 2

14 CHAPTER 1. 3. (a + b) 2 4. 1 ax + b = 0 x 5. () 0

1.2. 15 1.2 1. 1.2.1 1 2 2 2 3 5 ( 5 ) 3 1l 2

16 CHAPTER 1. 1.3 1.3.1 m kg ( ) s A Table 1.1: 4 SI ( MKSA ) k (1000 ) g( ) SI 4 ([K]) ([mol]) ([cd]) [ ] ( ) SI N m kg/s 2 Pa N/m 2 m 1 kg /s 2 J N m m 2 kg/s 2 J N m m 2 kg/s 2 J N m m 2 kg/s 2 W J/s m 2 kg/s 2 V W/A m 2 kg /(s 3 A 1 ) Table 1.2: SI ( ) 1.3 (9.8 [m/s 2 ])

1.3. 17 / km/h / m/s m 2 bar 10 5 Pa kgw 9.8 N 9.8m kg/s 2 Table 1.3: ( ) P 10 15 peta T 10 12 tera G 10 9 giga M 10 6 mega k 10 3 kilo h 10 2 hecto da 10 1 deca d 10 1 deci c 10 2 centi m 10 3 mili µ 10 6 micro n 10 9 nano p 10 12 pico f 10 15 femto Table 1.4: SI ( ) hpa ( ) h mbar ( ) SI 1 1013 hpa

18 CHAPTER 1. 1.3.2 ( ) 100% 1.3.3 1[g] 100[kg] 100001[g] ( ) 100[kg] 0.1[kg] 99.9[kg] 100.1[kg] 1[g] 1.000 10 2 [kg] 1 10 4 9.9995 10 1 = 1.000 10 2 = 1.0004 10 2 5 1.3.4 SI ( 1.2) ( = x ) F = m a = kg m/s 2 ( 1.2 ) = (kg) x (m/s 2 ) = kg m/s 2 =

1.4. 1 19 E = mc 2 1.0 10 3 [hpa] 10[cm] 1.4 1 3 1. 2 = 1.414, 3 = 1.732, 5 = 2.236 10 30 ( 10, 11,... 30) 3 25 = 5 12 = 2 3 ( : ) 2. 3. π 4. SI 5. 2 ax 2 + bx + c = 0 x pp.13 ( )

20 CHAPTER 1. 1.5 (= 1 ) xx 200m (= ) () ( ) (1,3), (-1,1), ( 3/2,1/2), (x,y) 2 (1,3,2), (-1,0,1), ( 3/2,1/2, 2), (x,y,z) 3 () 2 2 Figure 1.2:

1.5. 21 2 ( ) (a,b) a 2 + b 2 (a,b,c) a 2 + b 2 + c 2 1 1 e x = (1, 0) (1.1) e y = (0, 1) (1.2) 3 3 x, a, b x, a, b 1. 3 3 1.5.1 X = (x 1, x 2 ) = (3, 2) X = ( x 1 x 2 ) ( ) 3 = 2 Octave

22 CHAPTER 1. octave:> A=[1,2,3] A = 1 2 3 octave:> A=[1;2;3] A = 1 2 3 octave:> (,) (;) 1.5.2 ( ) 1.5.3 (cf. ) 1. 2.

1.6. 23 1.6 1.6.1 ( 1.3) (x 1, x 2 ) + (y 1, y 2 ) = (x 1 + y 1, x 2 + y 2 ) (1.3) (x 1, x 2 ) (y 1, y 2 ) = (x 1 y 1, x 2 y 2 ) (1.4) 2 (x 1, x 2 ) ± (y 1, y 2 ) = (x 1 ± y 1, x 2 ± y 2 ) (1.5) Figure 1.3: 1. 3 Octave 2. 2 A=(1;3;-1) B=(2;5;1)

24 CHAPTER 1. 1.6.2 2 2 2 1.6.3 m (a 1, a 2 ) = (m a 1, m a 2 ) (1.6) m ( ) 1.6.4 2 2 2 (x 1, x 2 ) (y 1, y 2 ) = x 1 y 1 + x 2 y 2 (1.7) 2 x = (x 1, x 2,...x n ), y = (y 1, y 2,...y n ) n x y = x i y i (1.8) i=1 ( x ) x y = x y cos θ (1.9) x, y 2 cos θ = x y x y (1.10) cos(π/2) = 0 ( )2 0

1.6. 25 Octave Octave 2 A,B A*B (JIS Shift+7) ctave-3.0.0:38> X=[1;2;3;4] X = 1 2 3 4 octave-3.0.0:39> Y=[9;8;7;6] Y = 9 8 7 6 octave-3.0.0:40> X*Y error: operator *: nonconformant arguments (op1 is 4x1, op2 is 4x1) error: evaluating binary operator * near line 40, column 2 # octave-3.0.0:40> X ans = 1 2 3 4 # octave-3.0.0:41> X *Y ans = 70

26 CHAPTER 1. 1. 2. ( ) a b = b a (a + b) c = a c + b c 2 3 x = (x 1, x 2, x 3 ), y = (y 1, y 2, y 3 ) θ z = x y (1.11) z = (x 2 y 3 x 3 y 2, x 3 y 1 x 1 y 3, x 1 y 2 x 2 y 1 ) (1.12) z = x y sin θ (1.13) 1.7 ( ) ( ) a b c 2 1, d e f 3 1 2 3 (2x3) 2 2 (2x2) (, ) (1,2) b 1

1.7. 27 A 3 1 3 2 A = 1 2 1 0 (1.14) 3 5 4 7 1. A 2. A (1,4) (3,2) 3. A 2 4. A 3 1.7.1 Octave Octave (,) (;) ( ) (, ) A (2,1) A(2,1) (:) A n A(:,n) m A(m,:) A,m 1..3 A(m,1:3) (:) Octave 1:n 1...n... octave:1> A=[3,1,-3,2;1,2,1,0; 2,5,4,7] A = 3 1-3 2 1 2 1 0 2 5 4 7 octave:2> A(1,4)

28 CHAPTER 1. ans = 2 octave:3> A(3,2) ans = 5 octave:4> A(:,2) ans = 1 2 5 octave:5> A(2,:) ans = 1 2 1 0 octave:6> A(3,:) ans = 2 5 4 7 1.7.2 A,B Octave 3 1 3 2 1 1 3 0 A = 1 2 1 0, B = 1 1 4 5 (1.15) 3 5 4 7 2 1 1 2 1. A+B 2. A-B 3. 2A-B 4. t A ( )

1.7. 29 5. t A+ t B ( ) A B AB A B ( ) t t (transpose) Octave ( : A ) shift-7 shift-@ ( ) a a b c A =, t A = b d e f c d e (1.16) f A B A tb (1.17) A(m n ) B(n p ) C C (m p ) c ij = n a ik b kj, i = 1 m, j = 1 p (1.18) k=1 a ij, b ij, c ij A,B,C (i j ) Figure 1.4:

30 CHAPTER 1. A,B A ta A tb Octave Octave.*./ ( ) N, P Octave:> N = [1,2,10; 3,0, 5; 4, 0, 1]; Octave:> P = [ 30, 20, 99; 40, 0, 112; 25, 0, 80]; octave:> Q = N.* P #.* Q = 30 40 990 120 0 560 100 0 80 octave:> sum(q) ans = 250 40 1630 # ( ) octave:> sum(q ) ans = 1060 680 180 # ( ) octave-3.0.0:80> sum(sum(q)) ans = 1920

1.7. 31 # 1.7.3 1 3 ( ) 1 0 E 1 0 1 E =... 0 1 (1.19) 0 4x1 m 1 0 0 0 0 1 0 0 0 0 m 0 0 0 0 1 (1.20) 1.7.4 2 1( ) 5 1/5 x 1/x = x 1 0 1 0 A AX = E (1.21) X A 1 Octave inv(a) 0 A 3

32 CHAPTER 1. A 0 A Octave det(a) 1. 3 1 3 1 1 3 A = 1 2 1, B = 1 1 4 3 5 4 2 1 1 2. 3. 2x2 X = ( a c ) b d det(x) = ad-bc R = ( cos θ sin θ ) sin θ cos θ 1.7.5 Ax = b (1.22) a b c x j d e f y = k (1.23) g h i z l ax + by + cz = j (1.24) dx + ey + fz = k (1.25) gx + hy + iz = l (1.26)

1.8. 2 33 A A 1 Ax = A 1 b (1.27) A A 1 = I x = A 1 b (1.28) x 2 x 2 1.8 2 3 1. x 1 OAB Figure 1.5: OAB OA, OB, AB, BA ( ) 4 2.

34 CHAPTER 1. (a) ( ) ( ) ( ) 1 1 x 9 = 4 2 y 24 (b) 9 24 (c) 3. 4. () 5. () 6. ( Excel)

1.9. 35 1.9 1 1. θ ( ) cos θ sin θ sin θ cos θ (1.29) 2. a ( ) a 0 0 a function y=rot(x) y = [cos(x),-sin(x);sin(x),cos(x)]; endfunction x0=[1;0]; step=0.1*pi; for(i=1:21) x0=rot(step)*x0; X(i,:)=x0 ; endfor plot(x(:,1),x(:,2), + ); (1.30) 1.9.1 Octave function y=rot(x) x = x*pi; y = [cos(x),-sin(x);sin(x),cos(x)];

36 CHAPTER 1. endfunction function T=trans(x,y) for(i=1:5) T(i,:)=[x,y]; endfor endfunction function plotr(x) plot(x(:,1),x(:,2)) endfunction function Y=rotation(X,a) Y=(rot(a)*X ) ; endfunction Bigbox=[-3,-3;5,-3;5,4;-3,4;-3,-3]; hold off; plotr(bigbox); hold on; R1 = [0,0;2,0;2,1;0,1;0,0]; (5,2) R1 R2 = rotation(r1, θ) R1 θ[rad] R2 (plot ) plotr(r1) Octave:> plotr(r1) Octave:> R2 = rot(0.3)*r1; Octave:> plotr(r2) Octave:> R3 = trans(1,2)+r1; Octave:> plotr(r3) Octave:> for(u=0.1:0.3:1.0) plotr(rotation(r3,u)) endfor