Hz

Similar documents
「産業上利用することができる発明」の審査の運用指針(案)

Part () () Γ Part ,

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

main.dvi

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

85 4

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

4‐E ) キュリー温度を利用した消磁:熱消磁

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

高等学校学習指導要領解説 数学編

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Gmech08.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

05Mar2001_tune.dvi

Q & A Q A p

Chap10.dvi

修士論文

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

keisoku01.dvi

空気の屈折率変調を光学的に検出する超指向性マイクロホン

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

function2.pdf

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

c 2009 i

untitled

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

数学の基礎訓練I

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

I

dynamics-solution2.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

I II III 28 29


A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2000年度『数学展望 I』講義録

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

untitled

main.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

基礎数学I

NETES No.CG V

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ


19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

koji07-01.dvi

PDF

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B


1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

液晶の物理1:連続体理論(弾性,粘性)

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

i 18 2H 2 + O 2 2H 2 + ( ) 3K

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

吸収分光.PDF

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

Microsoft Word - 学士論文(表紙).doc

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

1

Transcription:

( ) 2006 1

3 3 3 4 10 Hz

1 1 1.1.................................... 1 1.2.................................... 1 2 2 2.1.................................... 2 2.2.................................... 3 2.3.................................. 4 2.3.1............................... 4 2.3.2............................. 5 2.3.3............................... 9 3 11 3.1.................................. 11 3.2........................... 14 3.3.................................... 14 4 17 4.1............................... 17 4.2......................... 17 4.2.1................................... 17 4.2.2................................ 24 4.2.3.................... 24 4.3............... 29 4.3.1............................... 29 4.3.2.................................. 32 5 FM 35 6 37 6.1.................................... 37 6.2................................. 38 i

39 40 ii

2.1.................................... 2 2.2............................ 3 2.3.............................. 4 2.4....................... 8 2.5................................. 9 2.6............................... 9 2.7............................... 9 3.1............................... 12 3.2........................... 12 3.3................................. 13 4.1................................... 19 4.2 1.................. 20 4.3 2.................. 20 4.4 3.................. 21 4.5 4.................. 21 4.6 5.................. 22 4.7 6.................. 22 4.8 7.................. 23 4.9 2................. 23 4.10 E 4............................... 25 4.11 F 4............................... 25 4.12 A 4.............................. 26 4.13 A 4............................... 26 4.14 B 4.............................. 27 4.15 B 4............................... 27 4.16 C 5............................... 28 4.17 D 5.............................. 28 4.18 D 5............................... 29 4.19 (A) p1-m2..... 30 4.20 (A) p1-m2 (2).... 30 iii

4.21 (B) p1-m2..... 31 4.22 (C) p1-m2..... 31 4.23 (D) p1-m2..... 32 4.24 (1) p1-m5...... 33 4.25 (2) p1-m5...... 33 4.26 (3) p1-m5...... 34 5.1.............................. 36 5.2...................... 36 iv

1 1.1 [2 4] FFT [1] 1.2 2 3?? 5 6 1

2 2.1 2.1 [5] required tone air Player flow buzzing Lip Instrument tone reflected wave 2.1: 2

(a) (b) 2.2: (a): (b): 2.2 [5] 2.2(a) 2.2(b) [6] 1 ) [2 4] 3

a -x0 x 2.3: 2.3 2.3.1 [5] [7, 8] 2.3 x a a = b(x + x 0 ) γ (2.1) γ b x 0 4

f n f n c 4(l + x 0 ) { (2n 1) + β } γ(γ + 1) (2.2) [9] c l β γ < 0.8 0.6 γ > 0.8 0.7 γ = 1 f n nc 2(l + x 0 ) γ γ 0.7 [10] [10,11] (0.7,2,3,4,...) f 0 [5] (2.3) 2.3.2 2 3 5 7 2 3 n 2 n/12 [12] 1 2 2 3 7 2 3 2 4 5

5 3 6 2 3 7 n b n (n = 1,2,3) b n = 2 n 12 1 (2.4) b 1 0.060 (2.5) b 2 0.123 (2.6) b 3 0.189 (2.7) 5 4 ˆb 4 b 1 + b 3 0.249 < ˆb 4 0.260 (2.8) 6 7 b 2 + b 3 0.312 < ˆb 5 0.335 (2.9) b 1 + b 2 + b 3 0.371 < ˆb 6 0.414 (2.10) b 3 3 2 b 1 0.060 (2.11) b 2 0.123 (2.12) b 3 = ˆb 4 b 1 0.201 (2.13) (2.14) 4 : b 1 + b 2 0.182 (2.15) 5 : b 1 + b 3 = ˆb 4 0.260 (2.16) 6 : b 2 + b 3 0.323 (2.17) 7 : b 1 + b 2 + b 3 0.382 (2.18) 6

2.1: 1 0 position 1 2 3 4 4 5 6 7 piston 1 0 0 1 1 0 0 1 1 piston 2 0 1 0 1 0 1 0 1 piston 3 0 0 0 0 1 1 1 1 7 b 3 7 1 / : 2 2 / : 3 / : 3 on/off 2.1 4 4 p1-m2 2.4 2.5 r R Keefe Benade [13] B = r/r Z 0 = ρc/πr 2 δz ( ) 1 δz 2I 2 = 1 (2.19) Z 0 πb π ( ) 2 1 + Bcosθ I = cosθ ln dθ (2.20) 0 1 Bcosθ 7

2.4: p m p1-m2 1 2 8

( 2.5: 2.6: 2.3.3 2.6 [5] 2.7 V C = V ρc 2 (2.21)!" #$ % & '! 2.7: 0 9

ρ c l c S c R Z IN L = ρl c S c (2.22) Z IN = R + Z p + jωl 1 ω 2 LC + jωc(r + Z p ) (2.23) Z p ω 0 = 1 LC (2.24) Z p ω 0 Z p (2.23) 10

3 3.1 [5, 14] 3.1 3.2 3.3 3.3 [15] 3 [1] 11

3.1: 3.2: 12

wave hanning window FFT log10 20log 10 IFFT power spectrum cepstrum Peak Picking peak profile FFT cepstrum window spectrum envelope 3.3: 13

3.2 p m f pm [Hz] f pm = ma 4 2 p+22 12 (3.1) A 4 A 4 = 440 Hz f pm 10 3.3 F s = 48 khz 2 12 f f = F s 11.7Hz (3.2) 212 [1] N f A P 0 x(i) = Ae 2π j(p 0+i f /F s ) = Ae 2π j(p 0+i f /N) (i = 0,1,2,...,N 1) (3.3) ( f = N f F s ) (3.4) f ( ) 2πi w(i) = 1 cos N G(k) G(k) = (3.5) N 1{ w(i)x(i)e 2π jik/n} (3.6) i=0 cos(t) = (e jt + e jt )/2 w(i) = Ae 2π jp 0 N 1{ e 2π j( f k)/n 1 i=0 2 e2π j( f k+1)/n 1 } 2 e2π j( f k 1)/N (3.7) 14

a 1 N 1 a i = an 1 i=0 a 1 (3.8) e jt 1 = 2 j sin 1 2 e jt/2 (3.9) G(k) = Ae 2π jp 0 sin π( f k 1) N cos π( f k) N sin π( f k) N sin 2 π N sin π( f k+1) N G(k) k k max k max 1 2 f k max + 1 2 sinπ( f k))e π j( f k) 3.10 G(k max 1) G(k max ) r r = G(k max 1) G(k max ) cos π( f k max +1) = cos π( f k max ) N sin π( f k max 1) N N sin π( f k max +2) N (3.10) (3.11) (3.12) N θ 1 (3.13) cosθ 1 (3.14) sinθ θ (3.15) 3.12 π( f k max 1 N r π( f k max +2 N = f k max 1 f k max + 2 f = k max + 1 2r ( 1 + r f = k max + 1 2r ) Fs 1 + r N (3.16) (3.17) (3.18) 15

s = G(k max 1) G(k max ) (3.19) f = k max 1 2s 1 + s ( f = k max 1 2s ) Fs 1 + s N (3.20) (3.21) 3.18 3.21 r s G(k max ±1) f 3.10 A = G(kmax ) N π( f k max) sinπ( f k max ) ( f k max 1)( f k max + 1) (3.22) 16

4 4.1 4.1 0.9 m cm 48 khz DAT 4.1 (A) (1) (A1) 12 1 2 6 (A1) 2 6 4.1: (a) (b) A YTR-8335UGR 1 17D(inner gold) B V. Bach 180ML 2 1A C YTR-8335HS 3 Schilke 8A4 D YTR-800GS 4.2 4.2.1 4.2 4.8 1 7 2 6 17

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 4.2: A1 A2 A3 B1 B1 C1 C1 C1 C1 C1 D1 D1 18

Player Trumpet 0.9m Mic DAT 4.1: 1 1 khz 0.6 khz 2 19

4.2: 1 4.3: 2 20

4.4: 3 4.5: 4 21

4.6: 5 4.7: 6 22

4.8: 7 4.9: 2 23

4.2.2 4.9 2 3 1 3 4 7 1 3 2.1 3 4 7 3 4 3 3 3 3 3 4 1 1 1 2 4 (A1) 4.2.3 2.4 4.10 4.18 E 4 F 4 A 4 D 5 24

4.10: p2-m3 p7-m4(e 4 ) 4.11: p1-m3 p6-m4(f 4 ) 25

4.12: p3-m4 p7-m5(a 4 ) 4.13: p2-m4 p6-m5(a 4 ) 26

4.14: p1-m4 p5-m5(b 4 ) 4.15: p4-m5 p7-m6(b 4 ) 27

4.16: p3-m5 p6-m6(c 5 ) 4.17: p2-m5 p5-m6(d 5 ) 28

4.18: p1-m5 p4-m6(d 5 ) 4.3 4.3.1 3 p1-m2 4.19 (A) p1-m2 (A1) (A1) 4.20 4.23 (1) (C) 4 3 4 3 (C) (D) 29

4.19: (A) p1-m2 4.20: (A) p1-m2 30

4.21: (B) p1-m2 4.22: (C) p1-m2 31

4.23: (D) p1-m2 4.3.2 4.24 4.26 p1-m5 (1) (2) (3) 4 2 3 10 (3) (3) 32

4.24: (1) p1-m5 4.25: (2) p1-m5 33

4.26: (3) p1-m5 34

5 FM (A1) p1-m6 5.1 FFT (A1) p1-m6 5.2 100 ms 1/0.1 = 10 Hz 7Hz [16] 35

5.1: (A1) p1-m6 5.2: (A1) p1-m6 36

6 6.1 3 3 3 4 10 Hz 37

6.2 38

17 3 3 OB 39

[1],. FFT., J70-A, 5 pp. 798 805, 1987. [2],,,.. 16, pp. 133 134, 2004. [3] Kaneko, Y., Mizuhara, S., Mizutani, K., and Nagai, K. Artificial Lips for Automatic Trombone Blower. Proceedings of The First Asian Pacific Conference on Biomechanics Sponsored by The Japan Society of Mechanical Engineering, T-13-015, pp. 23 24, 2004. [4],,,.., MA2004-27, pp. 55 56, 2004. [5] Fletcher, N.H., and Rossing, T.D. The Physics of Musical Instruments. Springer-Verlag New York, 1998. [6] Yoshikawa, S. Acoustical Behavior of Brass Player s Lips. Journal of Acoustic Society of America, 97, pp. 1929 1939, 1995. [7] Benade, A.H. On Woodwind Instrument Bores. Journal of Acoustic Society of America, 31, pp. 137 146, 1959. [8] Benade, A.H., and Jansson, E.V. On Plane and Spherical Waves in Horns with Nonuniform Flare. Acustica, 31, pp. 80 98, 1974. [9] Benade, A.H. Fundamentals of Musical Acoustics. Oxford University Press, New York, 1976. [10] Young, F.J. The Natural Frequencies of Musical Horns. Acustica, 10, pp. 91 97, 1960. [11] Pyle, R.W. Effective Length of Horns. Acustica, 57, pp. 1309 1317, 1975. [12] Smithers, D., Wogram, K., and Bowsher, J. Playing the Baroque Trumpet. Scientific American, 254(4), pp. 108 115, 1986. [13] Keefe, D.H., and Benade, A.H. Wave Propagetion in strongly curved ducts. Journal of Acoustic Society of America, 74, pp. 320 332, 1983. 40

[14].., 1978. [15],.., 2005. [16]. FM AM. 21-3 pp. 109-116 1985. 41