離散研究会2013

Similar documents

PSCHG000.PS


SO(2)

新たな基礎年金制度の構築に向けて

( )

48 * *2

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

007 0 ue ue b 6666 D

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】

EPSON LP-8900ユーザーズガイド

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

II Time-stamp: <05/09/30 17:14:06 waki> ii

EPSON VP-1200 取扱説明書

熊本県数学問題正解

3-category

linearal1.dvi

1 (1) vs. (2) (2) (a)(c) (a) (b) (c) 31 2 (a) (b) (c) LENCHAR

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

重力と宇宙 新しい時空の量子論

学習の手順


/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語


( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 版が発効します 原文及び詳細はCPCホームページのCPC Revision

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

70 : 20 : A B (20 ) (30 ) 50 1

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

( )

meiji_resume_1.PDF

Taro10-名張1審無罪判決.PDF

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

Einstein ( ) YITP

PSCHG000.PS

SUSY DWs

12~

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 1 月 17 日 CPC 版のプレ リリースが公開されました 原文及び詳細はCPCホームページの C

EPSON LP-S7000 セットアップガイド

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

Jacobson Prime Avoidance

A

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

1 1 MM nm M1234n M4 ABAB nab ABz AB nabna AB AB nabnan B ABz nab nabnan B 202A3B B na10nb66 AB61218 n AB106 2 UUA A AA AA e AB na B na nbna B ABz na B

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

, = = 7 6 = 42, =

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:


Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

IA

/02/18

高校生の就職への数学II

行列代数2010A

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

n ( (

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

国試過去問集.PDF


PLC HMI High flexibility Simple networking Easy to use 190 HMI 2


1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,


24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

?

sec13.dvi

04年度LS民法Ⅰ教材改訂版.PDF

R R 16 ( 3 )

入試の軌跡

1. 2. C2

8

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

Chap10.dvi

ii

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin


3 1 1 BCA ACD HP A AB BC ABC ONP x AM, CN x 30 DM DM! CN CN AM AMD 10 1 AB AC

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

29

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like


A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

CD口頭目次.indd


2012専門分科会_new_4.pptx

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

Transcription:

2013 9 27-30,

S. Carlip, Challenges for Emergent Gravity, arxiv:1207.2504 [gr-qc]

Wheeler-DeWitt N= M abc,p abc a, b, c =1, 2,...,N M abc = M bca = M bac O(N) N.Sasakura, Quantum canonical tensor model and an exact wave function, Int.J.Mod.Phys.A28,1350111 (2013) [arxiv:1305.6389 [hep-th]]. M abc! J a a 0 J b b 0 J c c 0 M a 0 b 0 c 0 P abc! J a a 0 J b b 0 J c c 0 P a 0 b 0 c 0 J 2 O(N)

Wheeler-DeWitt

M ab 2-dim Simplicial Quantum Gravity (Free energy)

Ambjorn et al., NS, Gross, 1990 vertex propagator S = M abc M bac gm abc M ade M bef M cfd Hermiticity(generalized): M abc = M bca = M cab = M bac = M acb = M cba

Hermite /N Leading Group Field Theory index a! g Boulatov model, Ooguri model BF-theory Ponzano-Regge

Colored Tensor Model Gurau, 2009 color color 4X S = i=1 1 M i abcm i abc 2 3 gm 1 abcm 2 adem 3 bef M 4 cfd + c.c. 2 3 1 4 4 i i i i

Colored Tensor Model R.Gurau and J.P.Ryan, SIGMA 8, 020 (2012) [arxiv:1109.4812 [hep-th]]. /N Leading (leading, sub-leading) F = f 0 N D + f 1 N D 1 + Leading melonic singular Branched polymer R.Gurau and J.P.Ryan, Melons are branched polymers, arxiv:1302.4386 [math-ph].

Euclidean Dynamical Triangulation (DT) Causal Dynamical Triangulation (CDT) Ambjorn et al. time

CANONICAL TENSOR MODEL NS 2012 f a? f b = M abc f c {f a a =1, 2,...,N}

Hermiticity fa = f a (f a? f b ) = f b? f a hf a f b i = ab hf a f b? f c i = hf a? f b f c i = hf c? f a f b i Frobenius algebra Axiomatic TFT

f z = D (x z) z 2 R D f z1? f z2 = D (z 1 z 2 )f z1 momentum cutoff hi= Z d D x e ipx p < e ipx? e iqx = e i(p+q)x if p + q < 0 otherwise Gaussian Z f x? f y = A( ) d D z exp[ (x y) 2 (y z) 2 (z x) 2 ] f z!1 e ipx e iqx =exp[ (p 2 + q 2 +(p + q) 2 )]e i(p+q)x

a b c a M abc : O(N) fa 0 = J b a f b, J 2 O(N) O(N) l = M acd M bde M bef M afc M acd M bde M aef M bfc = 1 [M 2 Tr (a),m (b) ][M (a),m (b) ] M (a) bc M abc

proposition M abc l =0 M abc = J a a 0 J b b 0 J c c 0 M D a 0 b 0 c 0 M D abc = m a ab ac 9 m a 0 9 J 2 O(N) l l =0 [M (a),m (b) ]=0 M (a) [M (a),m (b) ]=0 9 J 2 O(N) M abc J l =0 f a? f b = m a ab f a

CANONICAL TENSOR MODELの 局所的ハミルトニアンの決定 fa : 直感的には 点 各点ごとに局所的ハミルトニアン Ha 無数のパス がある 大局的ハミルトニ アンは直ちに相対 論と矛盾するだろ う 時間発展 初期値 局所的時間発展 の相互無矛盾性 [Ha, Hb ] = 0 upto kinematic symmetry fa0 = Ja b fb, J 2 so(n )

Canonical Tensor Model H = N a H a + N [ab] J [ab] + ND H a, J [ab], D : N a, N [ab], N : multipliers ADM H a = 1 2 P abcp bde M cde J [ab] = 1 4 (P acdm bcd P bcd M acd ) D = 1 6 M abcp abc so(n) dx dt = x2 f a! cf a Raffaelli, Sato, NS {M abc,p def } = ad be cf +(perm. of def)

On-shell H a, J [ab], D {H(T 1 ),H(T 2 )} = J([ T 1, T 2 ]), {J(V ),H(T)} = H(VT), {J(V 1 ),J(V 2 )} = J([V 1,V 2 ]), {D,H(T)} = H(T ), {D,J(V )} =0, H(T )=T a H a, J(V )=V [ab] J [ab], T ab P abc T c D M abb M $ P H a! H a

ADM!1 P xyz = c (g(x)g(y)g(z)) 1 4 exp d(x, y) 2 + d(y, z) 2 + d(z,x) 2 x, y, z D g(x) =det[g µ (x)] d(x, y) x y {H(T 1 ),H(T 2 )} = J(g ij (T 1 @ j T 2 T 2 @ j T 1 )) {J(V i ),H(T)} = H(V i @ i T ) {J(V1 i ),J(V2 i )} = J(V j 1 Z @ jv i H(T )= dx T (x)h(x) 2 V j 2 @ jv1 i ) Z J(V i )= dx V i (x)h i (x) Hamiltonian constraints Momentum constraints

GEOMETRODYNAMICS Hojman-Kuchar-Teitelboim, 1976 Canonical Tensor Model Constraint (Dirac) algebra of general relativity D Canonical Tensor Model

[ ˆM abc, ˆP def ]=i ad be cf + perm.of def Ĥ a = ˆP abc ˆPbde ˆMcde + i H ˆPabb ˆ J [ab] = 1 4 ˆPacd ˆMbcd ˆPbcd ˆMacd ˆD = 1 6 ˆP abc ˆMabc + i D H = (N + 2)(N + 3) 2 D = N(N + 1)(N + 2) 2

[Ĥ(T 1 ), Ĥ(T 2 )] = i ˆ J ([ ˆT 1, ˆT 2 ]) [ J ˆ (V ), Ĥ(T )] = iĥ(vt) [ ˆ J (V 1 ), ˆ J (V 2 )] = i ˆ J ([V 1,V 2 ]) [ ˆD, Ĥ(T )] = iĥ(t ) [ ˆD, ˆ J (V )] = 0 ˆT bc = T a ˆPabc J ˆ( ˆV )= ˆV [ab] J[ab] ˆ ( [ ˆP abc ˆPbde ˆMcde, ˆP a ) 0 b 0 b 0] (a $ a0 )=4i ˆP abc ˆPa 0 bc +2i ˆP ˆP aa 0 b bcc (a $ a 0 )=0

WHEELER-DEWITT Wheeler-DeWitt Ĥ a = ˆ J [ab] = ˆD =0 : P = (P abc ), ˆP abc = P abc, ˆM abc = i (abc) @ @P abc, 8 >< 6 for a = b = c, (abc) = 2 for a = b 6= c, b = c 6= a, c = a 6= b, >: 1 for a 6= b, b 6= c, c 6= a. (Frobenius theorem)

N=2 N= H a J [ab] D so(2) J [ab] D J [ab] D

P 111 =1 P 112 =0 P 122 = x 1 P 222 = x 2 apple @ @ @ + x 1 + x 2 +2 =0 @P 111 @x 1 @x 2 apple @ @ (1 2x 1 ) x 2 +3x 1 @P 112 @x 1 apple @ 3 + x 1 (1 + 2x 1 ) @ +3x 1 x 2 @P 111 @x 1 apple @ x 1 (1 + 2x 1 ) +3x 1 x 2 @P 112 @ @x 2 =0 @ @x 2 + 5(1 + x 1 ) =0 @ + 3(x 2 1 + x 2 2 ) @ +5x 2 =0 @x 1 @x 2

@, @P 111 @ @P 112 apple 2x 1 (x 1 apple 4x 1 x 2 (x 1 1) @ @x 1 +3x 2 (x 1 1) @ @x 1 + 3(4x 1 3 +2x 1 x 2 2 1) @ @x 2 +5x 1 1 =0 x 2 2 ) @ @x 2 +5x 2 (2x 1 1) =0 apple x 1 x 2 (x 1 1) @ @x 1 + 2(5x 1 4 x 1 3 +2x 1 x 2 2 x 2 2 ) @ @x 2 =0 dx 2 = 2(5x 4 1 x 3 2 1 +2x 1 x 2 x 2 2 ) dx 1 x 1 x 2 (x 1 1) d x 2 2 = 4(2x 1 1) dx 1 x 1 (x 1 1) x 2 2 + 4x 1 2 (5x 1 1) x 1 1 ) = f 4x1 3 + x 2 2 x 14 (x 1 1) 4 a 0 = 4x 1 3 + x 2 2 x 14 (x 1 1) 4 f(x) / p x

= b 0 p 4x13 + x 2 2 x 12 (x 1 1) 2 J [ab] D p ac bd eg fh e0 g = c 0 f 0 h 0 P aef P bgh P ce0 f 0 P dg0 h 0 0 P acd P bde P bef P afc P acd P bde P aef P bfc l l =0 favor 9 f? f =0

Canonical Tensor Model Wheeler-DeWitt N= favor

N Regular around l =0 l N> favor Group Field Theory Raffaelli, Sato, NS P abc = J a a 0 J b b 0 J c c 0 P a 0 b 0 c 0, J 2 O(N)

ファジー空間の積による局所ハミルトニアンの自然な表現 Raffaelli, Sato, NS 振動や運動がどのようにして生じるのか 観測量の問題 cf. Rovelli: complete observable ヒント 拘束条件 @ = const. つまらない =0 テンソル模型には変数が沢山ある 拘束条件が一階微分で表される事を使う と もっと面白い解が沢山ある = 1 (x1 ) 2 (x2 ) @ 1 (x1 ) = eipx1 例えば ipx2 が解 2 (x2 ) = e 2 (x2 ) + 1 (x1 )@ 2 (x2 ) 1 (x1 ) または = x2 = t を時間と思えば = eip(x1 t) 1 2 @ @ 1 2 = ip = ip 1 2 =0