(7) u 1 θ A {u 1, u, u 3 } U = (u 1, u, u 3 ) A = UT (θ) + tu t UAU = T (θ) + () θ x z cos θ 0 sin θ cos θ sin θ 0 X(θ) = 0 cos θ sin θ, Y (θ) =

Similar documents
December 28, 2018

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

Part () () Γ Part ,


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

( )

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

pdf

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

TOP URL 1

I , : ~/math/functional-analysis/functional-analysis-1.tex

量子力学 問題



S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt



数学Ⅱ演習(足助・09夏)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

振動と波動

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

DVIOUT-HYOU

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

B ver B

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x


(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

熊本県数学問題正解

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

chap1.dvi

行列代数2010A

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (


1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =


85 4

newmain.dvi

Note.tex 2008/09/19( )

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37


Z: Q: R: C:

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

II 1 II 2012 II Gauss-Bonnet II

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

n ( (


..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

meiji_resume_1.PDF

70 : 20 : A B (20 ) (30 ) 50 1

Gmech08.dvi

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

all.dvi

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e


入試の軌跡

量子力学A

16 B

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

「図形の数理」テキストfinal.dvi

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

直交座標系の回転

08-Note2-web

Z: Q: R: C: sin 6 5 ζ a, b

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

,2,4

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

高校生の就職への数学II

5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4

Transcription:

Mathematics for Computer Graphics 1 1.1 a = (a x, a, a z ), b = (b x, b, b z ) c = (c x, c, c z ) a, b a, b a, b, c x,, z ( ) c a, b (vector product) (outer product) a b c = ( a b a z b z, a z b z a x b x, a x b x a b ) c (1) a x a a z (a b, c) = b x b b z (1) c x c c z 1. (1) U U t U = E (orthogonal matrix) () U a, b (Ua, Ub) = (a, b) (3) U U 1 = t U. (4) U = (u 1, u, u 3 ) {u 1, u, u 3 } ((u i, u j ) = δ ij ) (5) U det(u) = ±1 det(u) = 1 (rotation matrix) det(u) = 1 (reflection) (6) ±1 0 0 T (θ) ± = 0 cos θ sin θ 0 sin θ cos θ + det(u) = 1 1 det(u) = 1 1 1

(7) u 1 θ A {u 1, u, u 3 } U = (u 1, u, u 3 ) A = UT (θ) + tu t UAU = T (θ) + () θ x z 1 0 0 cos θ 0 sin θ cos θ sin θ 0 X(θ) = 0 cos θ sin θ, Y (θ) = 0 1 0, Z(θ) = sin θ cos θ 0 0 sin θ cos θ sin θ 0 cos θ 0 0 1 {a 1, a,..., a n,... } {a 1, a,..., a n } {u 1, u,..., u n (u i, u j ) = δ ij } u 1 = a 1 / (a 1, a 1 ), k t k = a k k 1 i=1 (a i, u i )u i, u k = t k / (t k, t k ) 1. u 1 = a 1 / (a 1, a 1 ), (u 1, u 1 ) = 1. t = a tu 1 u 1 0 = (t, u 1 ) = (a, u 1 ) t(u 1, u 1 ) = (a, u 1 ) t t = (a, u 1 ). u = t / (t, t ) {u 1, u } 3. t 3 = a 3 su 1 tu {u 1, u } 0 = (t 3, u 1 ) = (a 3, u 1 ) s s = (a 3, u 1 ), 0 = (t 3, u ) = (a 3, u ) t t = (a 3, u ). u 3 = t 3 / (t 3, t 3 ) {u 1, u, u 3 } 4. 3DCG 3DCG () 1 x 1 x- 3 1 () 1.3 (congruent transformation) (translation) (rotation) (reflection)

1.4 1.4.1 (scale transformation) (similar transformation) a 0 0 S(a, b, c) = 0 b 0 ( abc 0) (3) 0 0 c 1.4. 1 (shear or skew transformation) z z t (α, β, 1) 1 0 α H = 0 1 β 1 1 0 α = 0 1 β 0 0 1 0 0 1 1 0 α 1 0 0 1 0 0 1 0 α 1 0 α 0 1 0 0 1 β = 0 1 β 0 1 0 = 0 1 β 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 x z z x θ φ t (0, 0, 1) t (α, β, 1) α = tan θ β = tan φ H(θ, φ) 1 1 0 tan θ 1 0 tan θ H(θ, φ) = 0 1 tan φ = 0 1 tan φ (4) 0 0 1 0 0 1 3

z x x, π θ, tan(π θ) = tan( θ),. z x (4) tan θ, tan φ cot θ, cot φ,. θ > 0 θ < 0 x x z z θ x x θ x x z tan θ z tan θ z tan θ z tan θ z z z z z z tan ϕ z tan ϕ z tan ϕ ϕ ϕ < 0 z z z ϕ > 0 z z tan ϕ z ϕ Hamilton.1 3 3 3. 3 0 e ( ) A R 1 4

a A A L a : A A x ax A A L a 1 λ v 0 av = λv (a λe)v = 0. A v 0 a = λe, a Re. A = Re. Hamilton 4 H 3 Gauss computer graphics 4 R 4 e 0 = (1, 0, 0, 0), e 1 = (0, 1, 0, 0), e = (0, 0, 1, 0), e 3 = (0, 0, 0, 1) e 0 e 1 e 1 = e e = e 3 e 3 = e 1 e e 3 = e 0 e 1 e = e e 1 = e 3, e e 3 = e 3 e = e 1, e 3 e 1 = e 1 e 3 = e e 0 = 1, e 1 = i, e = j, e 3 = k α = a + ib + jc + dk (a, b, c, d R) i = j = k = ijk = 1 ij = ji = k, jk = kj = i, ki = ik = j i, j, k ( ) (a + ib + jc + kd)(r + ix + j + kz) = (ar bx c dz) + i(ax + br + cz d) + j(a bz + cr + dx) + k(az + b cx + dr). Hamilton R 4 a b c d F : H M(4, R) α = a + ib + jc + kd b a d c c d a b d c b a ( ) a + ib c id G : H M(, C) α = a + ib + jc + kd c id a ib 5

.3 Hamilton Hamilton (1) α = a + ib + jc + dk = a + q ( q = ib + jc + kd) a ( ) q ( ) a q = a ib jc kd α α ImH = {ib + jc + kd b, c, d R} Hamilton () α = a + ib + jc + kd αα = a + b + c + d. αα = α α α (3) α 0 α 1 = α. Hamilton α (4) α ( α = 1) α = cos 1 ω + sin 1 ωβ β ImH, β = 1, 0 < ω < π α = a + q ( q ImH) b = q, β = q/b β = 1, α = a + bβ. αα = (a + bβ)(a bβ) = a + (bβ) = a + b = 1 a = cos 1 ω, b = sin 1 ω 0 < ω < π (Euler from) i, j, k.4 3 α = a + ib + jc + kd ( α = 1) ζ = w + ix + j + kz αζα = w + i{(a + b c d )x + (bc ad) + (ac + bd)z} + j{(bc + ad)x + (a b + c d ) + (cd ab)z} + k{(bd ac)x + (ab + cd) + (a b c + d )z} αζα = w + ix + j + kz x a + b c d (bc ad) (ac + bd) 0 x z = (bc + ad) a b + c d (cd ab) 0 (bd ac) (ab + cd) a b c + d 0 z w 0 0 0 1 w (1) 6

α α = cos 1 ω + sin 1 ω β, β = ip + jq + kr, p + q + r = 1 3 3 T ω = ω cos ω + (p 1) sin ω r cos ω sin ω + pq sin ω q cos ω sin ω + pr sin ω T = r cos ω sin ω + pq sin ω cos ω + (q 1) sin ω p cos ω sin ω + qr sin ω q cos ω sin ω + pr sin ω p cos ω sin ω + qr sin ω cos ω + (r 1) sin ω T () t T T = E (3) t (p, q, r) 1 (4) Tr(T ) = 3 cos ω sin ω = 1 + cos ω T t (p, q, r) ω T Tr(T ) = 1 + e iω + e iω.5 CG p 1 θ 1 0 0 P = ( p 1, p, p 3 ), S = 0 cos θ sin θ P SP 1. 0 sin θ cos θ p 1, p, p 3 p, p 3 p 1 (1) () p p 1, p p 3 (3) p 1 α = a + ib + jc + kd β = ib + jc + kd α = a + β, cos θ/ = a/ α, sin θ/ = β / α θ t (b, c, d) T smoothness 7

.6 CG Interactive Computer Graphics, E. Angel αβα α = i cos θ + j sin θ t (cos θ, sin θ, 0) π α = cos ω/ + i sin ω/ cos θ + j sin ω/ sin θ α = cos ω/ + (ip + jq + kr) sin ω/ ( p + q + r = 1 ) 3 3.1 CG CG 3. V A a V p A p + a A A V (standard vector space) (affine space) (1) (p + a) + b = p + (a + b) (p A, a, b V) () p, q A q = p + a a V (i) (ii) n + 1 W n V A = {p + a 0 p V, a V} A V o A p A p = o + a a o (initial point) p (position vector) op 8

V A r + 1 p i (0 i r) r p 0 p i (1 i r) V n n + 1 V n e 1,..., e n V o A p A p = o + n x i e i i=1 F = (o ; e 1,..., e n ) A (affine frame) (homogeneous coordinate) x 1. x n 1 A, B V, W ϕ : A B (affine mapping) ϕ ψ : V W ϕ(p + x) = ϕ(p) + ψ(x) p A, x V A = B ϕ ϕ (affine transformation) ( ) M t 0 1 (1) P ( ) P t 0 0 1 () t = (α, β, γ) ( ) E t t 0 1 0 = (0, 0, 0) E 3.3 A V (o ; e 1,..., e n ), (o ; f 1,..., f n ) 9

p A n p = o + x i e i = o + o = o + f j = i=1 n j f j j=1 n a i e i i=1 n t ji e i (j = 1,..., n) i=1 ( ) ( n n n ) p = o + a i e i + j t ji e i = o + x i = a i + i=1 n a i + i=1 j=1 n j t ji e i j=1 n j t ji (i = 1,..., n) j=1 i=1 x 1 t 11... t n1 a 1 1. x n =....... t 1n... t nn a n n 1 0... 0 1 1 1 t 11... t n1 a 1. n =...... t 1n... t nn a n 1 0... 0 1 1 x 1. x n 1 (5) 3.4 3DCG 3DCG CG x z 10

z 3DCG VRP(View Reference Point), VUP(View Up Vector), VPN(View Plane Normal) VUP VPN z VPN x VRP (e x, e, e z ) VUP (u x, u.u z ) VPN (n x, n, n z ) (α, β, γ) = (u x, u, u z ) ( n x, n n ) T α u x n x e x T = β u n e γ u z n z e z 0 0 0 1 (w x, w, w z ) (c x, c, c z ) c x w x T c c z = w w z 1 1 c x w x c c z = T 1 w w z 1 1 OpenGL glulookat(eex ee, eez, atx, at, atz, upz, up, upz) (eex, ee, eez) (COP) (atx, at, atz) (upx, up, upz) VRP = (eex, ee, eez), VUP = (upx, up, upz), VPN = (atx eex, at ee, atz eez) VUP VPN (α, β, γ) α upx eex atx eex T = β up ee at ee γ upz eez atz eez 0 0 0 1 11

3.5 OpenGL 3.5.1 OpenGL, OpenGL. postmultiplication (CTM = current transformation matrix) CTM x = Mx (M : CTM) a T( a) R(θ) T(x) x = T(a)R(θ)T( a)x glmatrixmode(gl_modelview); glloadidentit(); gltranslatef(ax, a, az); glrotatef(t, rx, r, rz); gltranslatef(-ax, -a, -az); /* define objects here */ glutswapbuffer(); 3.5. OpenGL 4 4 API 1 1 1 ( ) 0 4 8 1 1 5 9 13 6 10 14 3 7 11 15 1 0 0 M = 0 1 3 0 0 0 1 0 0 0 0 1 1

GLfloat m[16]; for(i=0;i<15;i++) m[i]=0.0; m[0]=m[5]=m[10]=m[15]=1.0; m[4]=.0; m[9]=3.0; CTM glloadmatrixf(marra) CTM glmultmatrixf(marra) CTM glpushmatrix(); gltranslatef(...); glrotatef(...); glscalef(...); /* draw objects */ glpopmatrix(); 4 CG (Projection) 4.1 CG (COP = center of projection) COP (projector) (view volume) (clipping) CG 4. CG 13

4..1 (parallel projection) COP COP DOP(Direction Of Projection) (orthogonal or orthographic projection) DOP (oblique projection) DOP (bellows) 4.. (perspective projection) COP,, 3, 3 1 1 1 1 3 1 1 ( ) CG 5 5.1 OpenGL (tranform) (projection) glmatricmode(gl_modelview) glmatrixmode(gl_projection) ( ) 14

5. 5..1 COP DOP 1. orthogonal projection orthographic projection ( ) DOP z z = 0 x p x 1 0 0 0 x p z p = P orth z = 0 1 0 0 0 0 0 0 z (z p = 0) 1 1 0 0 0 1 1. DOP 3 z x CG x, z OpenGL z DOP DOP xz z θ z z φ,., DOP x (x,, z) (x p, p, z p ) ( z p = 0) x p x z p z = tan θ x p = x z tan θ p z p z = tan φ p = z tan φ (4) 1 0 tan θ 0 H = H(θ, φ) = 0 1 tan φ 0 0 0 1 0 0 0 0 1 15

DOP z DOP x tan θ, tan φ cot θ, cot φ P = P orth H matrixh H. glmatrixmode(gl_projection); glloadidentit(); glortho(-4.0,6.0,-4.0,6.0,-0.0,0.0); glmatrixmode(gl_modelview); glloadidentir(); glulookat(0.0,0.0,6.0,0.0,0.0,0.0,0.0,1.0,0.0); glmultmatrixf(matrixh); /* define view objects */ glortho. z skew oblique skew oblique ortho ortho θ x z ϕ θ > 0 ϕ < 0 DOP z DOP 5.. COP COP ( ) COP z = d (d < 0) view volume COP (frustum) (x,, z) (x p, p, z p ) z p = d (x,, z) (x p, p, z p ) x p x = p = z p z 16

x p = x z/d p = z/d z = d x p p z p = x z/d z/d d x 1 0 0 0 x x z/d 0 1 0 0 0 0 1 0 z = z 4 z/d d 0 0 1/d 0 1 z/d 1 z OpenGL glfrustum(left,right,bottom,top,near,far) gluperspective(fov,aspect,near,far) gluperspective fov field of view angle of view clipping COP aspect clippping w/h near, far glfrustum 5.3 Normalization 5.3.1 OpenGL glmatrixmode(gl_projection); glloadidentit(); glortho(left,right,bottom,top,near,far); near far 0 < near < far clipping left x right, bottom top, near z far default clipping 1 x 1, 1 1, 1 z 1 17

clipping ( ) x = ±1, = ±1, z = ±1 (normalization) clipping ( (x max + x min )/, ( max + min )/, (z max + z min )/) clipping x = ±1, = ±1, z = ±1 x /(x max x min ) /( max min ) z /(z max z min ) P = P orth ST x max x min 0 0 0 1 0 0 xmax xmin = P orth 0 max min 0 0 0 1 0 max min 0 0 z max z min 0 0 0 1 z max z min 0 0 0 1 0 0 0 1 x max x min 0 0 x max+x min x max x min = P orth 0 max min 0 max+min max min 0 0 z max z min zmax+zmin z max z min 0 0 0 1 z z 1 z max = near, z min = far z 1 right left 0 0 right+left right left P = P orth 0 top bottom 0 top+bottom top bottom far+near 0 0 far near far near 0 0 0 1 5.3. Perspective gluperspective(fov,aspect,near,far) fov = 90 view volume 45 view volume x = ±z, = ±z z near, far z z = ±1 z = 1 d = 1 1 0 0 0 M = 0 1 0 0 0 0 1 0 0 0 1 0 18

1 0 0 0 N = 0 1 0 0 0 0 α β 0 0 1 0 αβ 0 N M orth 1 0 0 0 M orth N = 0 1 0 0 0 0 0 0 0 0 1 0 x x x z = M orthn z = 0 w z w 4 (perspective division) x p = x z p = z x x z = N z w w x = x, =, z = αz + β, w = z perspective division x = x z, = z, z = ( α + β z max ) ( = 1 α + β z min α = z max + z min z max z min β = z maxz min z max z min ( α + β ) z ) = 1 19

z = ±1 N z = ( α + β ) z z max, z min z = 0 β > 0 z 1 < z = z 1 < z z z = 1 z = β α M orth 5.3.3 Frustum glfrustum x = ±z, = ±z, 1 z 1 glfrustum(left,right,bottom,top,near,far) z z ( xmin + x max, ) min + max, z max t ((x max + x min )/z max, ( max + min )/z max, 1) (4) x 1 0 max +x min z max 0 H = 0 1 max+ min z max 0 0 0 1 0 0 0 0 1 θ, φ 1 1 0 x max+x min z max 0 = 0 1 max+min z max 0 0 0 1 0 0 0 0 1 cot θ = x min + x max z max, cot φ = min + max z max 1 0 cot θ 0 H = H(θ, φ) = 0 1 cot φ 0 0 0 1 0 0 0 0 1 0

view volume COP H(θ, φ) frustum x min min z max 1 = x min x max min max z max 1 x max H(θ, φ) max z max = 1 x max x min max min z max 1 x = ± x max x min z max z = ± max min z max z z min z z max x = ±z = ±z z max z max S(,, 1) x max x min x max x min z = ±1 N P API z max x max x min 0 xmax+xmin x max x min 0 z P = NSH = 0 max max min max+ min max min 0 0 0 z max+z min z max z min 0 0 1 0 OpenGL z max = near, z min = far z max z min z max z min OpenGL z 3 1 z max x max x min 0 xmax+xmin z P = 0 max max min max+ min max min 0 0 0 far+near far near 0 0 1 0 x max x min 0 far near far near 1

6 6.1 (p, q, r) lx + m + nz + c = 0 P = (x,, z) P = (x s, s, z s ) P lx s + m s + nz s + c = 0 P P x s x p = s q = z s z r k lx + m + nz + c k = K K = lp + mq + nr x s = (K lp)x mp npz cp K s = lqx + (K mq) nqz cq K z s = lrx mr + (K nr)z cr K x K lp mp np cp x M oshd z = lq K mq nq cq lr mr K nr cr z 1 0 0 0 K 1 p 0 0 0 1 1 1 1 l 0 0 0 M oshd = K E 4 0 q 0 0 1 1 1 1 0 m 0 0 0 0 r 0 1 1 1 1 0 0 n 0 0 0 0 1 0 0 0 0 0 0 0 c (6) (7) OpenGL (6) (7) + c = 0 l = n = p = r = 0, m = 1, q = 1

x 1 0 0 0 x x M oshd z = 0 0 0 c 0 0 1 0 z = c z 1 0 0 0 1 1 1 + c = 0 (p, q, r) l = n = 0, m = 1 x q p 0 cp x M z = 0 0 0 cq 0 r q cr z 1 0 0 0 q 1. 6. L = (p, q, r) lx + m + nz + c = 0 P = (x,, z) P = (x s, s, z s ) P lx s + m x + nz s + c = 0 L, P, P 1 (x s p, s q, z s r) = k(x p, q, z r) K k = lx + m + nz + c K K = lp + mq + nz + c x s = s = z s = (K lp)x mp npz cp K (lx + m + nz + c) lqx + (K mq) nqz cq K (lx + m + nz + c) lrx mr + (K nr)z cr K = (lx + m + nz + c) 3

x K lp mp np cp x M pshd z = lq K mq nq cq lr mr K nr cr z 1 l m n K c 1 p 0 0 0 1 1 1 1 l 0 0 0 M pshd = KE 4 0 q 0 0 1 1 1 1 0 m 0 0 0 0 r 0 1 1 1 1 0 0 n 0 0 0 0 1 1 1 1 1 0 0 0 c (8) OpenGL 1 0 0 p p 0 0 0 1 1 1 1 l 0 0 0 1 0 0 p 0 1 0 q 0 q 0 0 1 1 1 1 0 m 0 0 0 1 0 q 0 0 1 r 0 0 r 0 1 1 1 1 0 0 n 0 0 0 1 r = 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 c 0 0 0 1 p 0 0 p 1 1 1 1 l 0 0 lp 0 q 0 q 1 1 1 1 0 m 0 mq 0 0 r r 1 1 1 1 0 0 n nr = 0 0 0 1 1 1 1 1 0 0 0 c 0 0 0 0 l 0 0 lp 0 0 0 0 0 0 0 0 0 m 0 mq 0 0 0 0 0 0 n nr = 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 c l m n K 1 0 0 p 1 0 0 p K 0 0 0 0 1 0 q 0 0 1 r M 0 1 0 q pshd 0 0 1 r = 0 K 0 0 0 0 K 0 0 0 0 1 0 0 0 1 l m n 0 1 0 0 p K 0 0 0 1 0 0 p M pshd = 0 1 0 q 0 K 0 0 0 1 0 q 0 0 1 r 0 0 K 0 0 0 1 r 0 0 0 1 l m n 0 0 0 0 1 (9) OpenGL (9) 4

+ c = 0 l = n = 0, m = 1 (9) 1 0 0 p 1 0 0 0 1 0 0 p M pshd = 0 1 0 q 0 1 0 0 0 1 0 q 0 0 1 r 0 0 1 0 0 0 1 r 0 0 0 1 0 1 q+c 0 0 0 0 0 1 (10) 6.3 (7) (8) 4 (9) (8) 1 (10) transform object() shdm[] main() void o_shadow() { GLfloat shdm[16]; for(i=0;i<15;i++) shdm[i]=0; shdm[0]=shdmm[5]=shdm[10]=1; shdm[7]=-1/(q+c); } gldisable(gl_light0); glpushmatrix(); gltranslatef(p,q,r); glmultmatrix(shdm); gltranslatef(-p,-q,-r); object(); glpopmatrix(); glenable(gl_light0); gldisable(gl_light0) object() displa() 5

, 7 7.1 1 1 3 f(x) = x (x < 0), x (0 x) x = 0 0 f (x) = x (x < 0), x (0 < x) x = 0 0 f (x) = (x < 0), (0 < x) x = 0 3 x = 0 CG 7. n + 1 (x 0, 0 ), (x 1, 1 ),..., (x n, n ) n x 0, x 1,..., x n f(x, ) = 0 1 (f(t), g(t)) (f(t), g(t), h(t)) (f(s, t), g(s, t), h(s, t)) CG 6

7.3 (x i,0 + x i,1 t + + x i,m t m, i,0 + i,1 t + + i,m t m, z i,0 + z i,1 t + + z i,m t m ) 1 1 1 3 1 3 1 ( 0, 1,..., n ) [ i, i+1 ] f i (t) = a i + b i t + c i t + d i t 3 (0 t 1) (11) 1,,..., n 1 1 f i 1 (1) = i f i (0) = i (1), 3 f i 1(1) = f i(0) f i 1(1) = f i (0) (13) i = 1,,..., n 1 0, n f 0 (0) = 0 f n 1 (1) = n (14) 4n 4(n 1) + = 4n f 0 (0) = 0 f n 1(1) = f n(0) = 0 (15) i 1 4n (1),(13) i (Bartels et al., 1998) f i (0) f i (0) 1 f i (0) = a i = i f i (1) = a i + b i + c i + d i = i+1 (16) 7

, 3 f i(0) = b i = D i f i(1) = b i + c i + 3d i = D i+1 (17) 4 c i = 3( i+1 i ) D i D i+1 (18) d i = ( i i+1 ) + D i + D i+1 (19) f 0 (0) = c 0 = 0 D 0 + D 1 = 3( 1 0 ) f 0 (1) = f 1 (0) c 1 = 3d 0 D 0 + 4D 1 + D = 3( 0 ) 1 1 4 1 1 4 1.......... 1 4 1 1 D 0 D 1 D. D n 1 D n 3( 1 0 ) 3( 0 ) 3( 3 1 ) =. 3( n n ) 3( n n 1 ) (0) ( ) ( ) ( ) 1 4 1 D n 1 3( n n ) = 1 1 4 3( 0 n 1 ) D n (1) D i D i a i, b i, c i, d i 4 f 0 (0) = f n(0) = 0 3 3 (cubic spline) (natural spline) 7.4 (1961 ) P(t) = P 0 + t(p 1 P 0 ) = (1 t)p 0 + tp 1 (0 t 1) P i i ( ) 3 P 0, P 1, P (de Castljou) 8

P 10 (t) = (1 t)p 0 + tp 1 (P 0, P 1 ) P 11 (t) = (1 t)p 1 + tp (P 1, P ) P(t) = (1 t)p 10 + tp 11 (P 10, P 11 ) P(t) = (1 t) P 0 + t(1 t)p 1 + t P (0 t 1) 4 P 0, P 1, P, P 3 P 0 (t) = (1 t) P 0 + t(1 t)p 1 + t P P 1 (t) = (1 t) P 1 + t(1 t)p + t P 3 P(t) = (1 t)p 0 (t) + tp 1 (t) = (1 t) 3 P 0 + 3t(1 t) P 1 + 3t (1 t)p + t 3 P 3 (0 t 1) n + 1 P 0, P 1,..., P n ( ) n n P(t) = B k,n (t)p k B k,n (t) = t k (1 t) n k () k k=0 P 0, P 1,..., P n (control points) n (Bézier curve) (Bernstein Bézier curve) B k,n (t) ( ) n 1 = ((1 t) + t) n n n = t k (1 t) n k = B k,n (t) k k=0 k=0 1 P k (1) () P(0) = P 0, P(1) = P 1 (3) P (t) = n(1 t) n 1 P 0 + (n(1 t) n 1 n(n 1)t(1 t) n )P 1 +t(1 t)(c P + + c n P n ) +(n(n 1)(1 t) nt n 1 )P n 1 + nt n 1 P n P (0) = n(p 1 P 0 ), vp (1) = n(p n P n 1 ), 9

(4) 0 < t < 1 (5) (6) 7.5 P 0, P 1,..., P n w 0, w 1,..., w n R(t) = n k=0 B k,n(t)w k P k n k=0 B k,n(t)wi B k,n (t) (rational Bézier curve) (1) () (3) (4) 7.6 B- 1 B- 1 [0, 1] [0, 1] 0 1 1 (C ) 30

3 f(x) = x 3 (x < 0), x 3 (0 x) f (x) = 3x (x < 0), 3x (0 x), f (x) = 6x (x < 0) 6x (0 x) x = 0 1 ( ) Cox de Boor B P 0, P 1,..., P n p (1) U = {u 0, u 1,..., u m 0 u 0 u 1 u m 1} (knot vector), u j (knot), [u j, u j+1 ) j (j th knot span) () u j = u j+1 = = u j+k 1 (k > 1) k (multiple knot of multiplicit k) u j (k) (simple knot) (3) 0 < u j < 1 (inner knot) (4) (u 1 u 0 = u u 1 = = u m u m 1 ) (uniform) (non uniform) 1 B (basis function) N i,0 (t) = 1 (u i t < u i+1 ) 0 (otherwise) N i,p (t) = t u i N i,p 1 (t) + u i+p+1 t N i+1,p 1 (t) u i+p u i u i+p+1 u i+1 N i,0 1 0 N i,1 (t) 0 0 B 0 (1) N i,p (t) p () N i,p (t) 0 (3) N i,p (t) > 0 (u i t < u i+p+1 ) (4) [u i, u i+1 ) N i p,p (t), N i p+1,p (t),..., N i,p (t) 0 (5) i k=i p N k,p(t) = 1 (u i t < u i+1 ). [u i, u i+1 ) 1 31

(6) m + 1, p, n + 1, m = n + p + 1 n + 1 B p (7) k N i,p (t) C p k p k B B (B spline) n C(t) = N i,p (t)p i i=0 (3) [0, 1] 1 B 0,n (0) = 1, B n,n (1) = 1 P 0, P n B N 0,p (0) = 0, N n,p (1) = 0, (1) B (open) B () B (clamped) B (3) B (closed) B (1) p B [u p, u n p ] 1 () p B p + 1 u 0 = u 1 = = u p = 0, u m p = u m p+1 = = u m = 1 (3) (u 0 = = u p = 0, u p+1 = = u p+1 = 1) B (4) t, t = u k, C(u k ) (knot point) B (5) n + 1, B p, m + 1 m = n + p + 1 (6) B u i t < u i+1 p C(t) P i p, P i p+1,..., P i 3

(7) P i C(u i ) C(u i+p+1 ) (8) B 3 B B B B NURBS(non-uniform rational B spline) 7.7 n m S(s, t) = B i,n (s)b j,m (t)p i,j (0 s, t 1) i=0 j=0 P i,j ( ), B i,n (tensor product) n m n m S(s, t) = B i,n (s) B j,m (t)p i,j = B i,n (s)p i (s) P i (s) = B j,m (t)p i,j i=0 j=0 i=0 j=0 P i (s) s (sweep) 3DCG NURBS 7.8 P(t) = (x(t), (t), z(t)) P(t) (tangent vector) P (t) = (x (t), (t), z (t)) (u(t) v(t)) = u (t) v(t) + u(t) v (t) u(t) = v(t) = P (t) 0 P (t) P (t) P (t) 0 N(t) P(t) (normal vector) (binormal vector) 33

P(t) Q, R 3 Q, R P(t) N(t) B(t) N(t) = P (t) P (t) B(t) = P (t) P (t) P P (t) P(t) Q, R 3 Q, R P(t) (circle of curvature) r K(t) = 1 r (curvature) K(t) = P (t) P (t) P (t) 3 = (t) (t) z (t) z (t) x (t) x (t) z + (t)) z (t) x + (t)) x (t) ( x ) 3 (t) + (t) + z (t) (t) (t)) P(t) = (x(t), (t)) K(t) = x (t) (t) x (t) (t) ( x (t) + (t) ) 3 = f(x) K(x) = ( 1 + ) 3 34