CKY CKY CKY 4 Kerr CKY

Similar documents
3 exotica

“‡”�„³…u…›…b…N…z†[…‰

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


YITP50.dvi

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

all.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

TOP URL 1

『共形場理論』

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

( ) ( )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Z: Q: R: C: sin 6 5 ζ a, b

TOP URL 1


( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

ssastro2016_shiromizu

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

meiji_resume_1.PDF

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

Microsoft Word - 11問題表紙(選択).docx

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC



Part () () Γ Part ,

量子力学 問題

December 28, 2018

Einstein ( ) YITP

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

i 18 2H 2 + O 2 2H 2 + ( ) 3K

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Gmech08.dvi

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

SUSY DWs

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

熊本県数学問題正解

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

SO(2)

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

30

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

I

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

TOP URL 1

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

基礎数学I

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

201711grade1ouyou.pdf


,,..,. 1

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

The Physics of Atmospheres CAPTER :

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

all.dvi

DVIOUT

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

( )

数学の基礎訓練I

Z: Q: R: C: 3. Green Cauchy

第1章 微分方程式と近似解法

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

IA

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2


S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

(1) (2) (3) (4) 1

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

構造と連続体の力学基礎

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

2000年度『数学展望 I』講義録

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

QMII_10.dvi

Untitled

Transcription:

( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010) (III) Einstein, -Einstein - 2011 4

CKY CKY CKY 4 Kerr CKY

4-dim. Kerr metric g = r ρ 2 ( dt a sin 2 θdϕ ) 2 + ρ 2 r dr 2 + ρ 2 dθ 2 + sin2 θ ρ 2 ( adt (r 2 + a 2 )dϕ ) 2 r = r 2 + a 2 2mr, ρ 2 = r 2 + a 2 cos 2 θ m:, a: :, Klein-Gordon [Carter 1968] Maxwell, [Teukolsky 1972] Dirac [Chandrasekhar 1976]

t, ϕ. f = (f ab ) : f = f ab = f ba, a f bc + b f ac = 0 0 a cos θ ar sin θ 0 a cos θ 0 0 a 2 cos θ sin 2 θ ar sin θ 0 0 r(r 2 + a 2 ) sin θ 0 a 2 cos θ sin 2 θ r(r 2 + a 2 ) sin θ 0 t r θ ϕ

(1) Carter (Walker-Penrose 1970, Floyd 1973) C = K ab p a p b, K ab f ac f c b ( ) (2) Klein-Gordon (Carter 1977): K = a K ab b (3) Dirac (Carter-McLenaghan 1979): f = iγ 5 γ a (f b a b (1/6)γ b γ c c f ab )

(CKY) rank-2 CKY ( 1969): a h bc + b h ac = 2g ab ξ c g cb ξ a g ca ξ b, ξ c = 1 n 1 a h ac rank-p CKY ( 1968): p 1 a h bc1 c p 1 + b h ac1 c p 1 = 2g ab ξ c1 c p 1 + ( 1) i g ci (aξ b)c1 ĉ i c p 1 1 ξ c1 c p 1 = D p + 1 a h ac1 c p 1 ξ c1 c p 1 0 CKY. i=1

h a1 a 2 a p h = 1 p! h a 1 a 2 a p dx a 1 dx a p D CKY p-form X h = 1 p + 1 i(x)dh 1 D p + 1 X δh δh = 0 dh = 0 closed CKY closed CKY (p-form) (D-p form)

1 S n, E n, H n (Riemann) ds n, E 1,n 1, AdS n (Lorentz). Special CKY [ -Yu 1970] : X (dh) = cx h c

[Semmelmann 2002] Special CKY Einstein S (a) S n (b) -Einstein (c) 3- (d) Nearly Kähler (e) Weak G 2 C(S) ( ) (a) Euclid (b) Calabi-Yau (c) Hyperkähler (d) G 2 (e) Spin(7)

( ) SUSY k T k {1} 1 6 Calabi-Yau SU(3) 1/2 7 G 2 G 2 1/8 8 Hyper-Kähler Sp(2) 1/4 8 Calabi-Yau SU(4) 1/8 8 Spin(7) Spin(7) 1/16

CKY ds n, AdS n, 4 Kerr (Lorentz) S n, H n, (Riemann) (rank-2 closed CKY), Klein-Gordon, Dirac rank-2 closed CKY

1. 2. CKY 3. (CKY) 4. CKY (GCKY) 5. Einstein

2. CKY 1970 Einstein Solutions of Einstein s Equation Lecture Notes in Physics 205 (1984) Gravitational Solitons V. Belinski (2001) (5 [Pomeransky-Sen kov] [Elvang-Figueras, - ] Kerr-Schild (D ) Minkowski (AdS) g µν = η µν + h µν Ansatz: h µν k µ k ν (

D ( 4) R µν = Λg µν mass rotation NUT Λ parameter Myers-Perry (1986) 0 1+[(D-1)/2] Gibbons-Lü-Page-Pope (2004) non-zero 2+[(D-1)/2] Chen-Lü-Pope (2006) non-zero D Kerr-NUT-de Sitter Chen-Lü-Pope )

Kerr-NUT-de Sitter metric [Chen-Lü-Pope 2006] (a) D = 2n (b) D = 2n + 1 g (2n+1) = g (2n) = n µ=1 n µ=1 dx 2 µ Q µ (x) + dx 2 µ Q µ (x) + ( n n ) 2 Q µ (x) σ k 1 (ˆx µ )dψ k µ=1 ( n n Q µ (x) µ=1 k=1 k=1 σ k 1 (ˆx µ )dψ k ) 2 + c σ n ( n ) 2 σ k dψ k k=0 σ k σ 1 = x 2 1 + x2 2 + + x2 n, σ 2 = x 2 1 x2 2 + + x2 n 1 x2 n,

Q µ (x) = X µ /U µ, U µ = n ν=1,ν µ (x 2 µ x2 ν ) X µ = X µ (x µ ) x µ. Einstein (a) X µ = (b) X µ = n k=0 n k=0 c k x 2k µ + b µx µ (D = 2n) c k x 2k µ + b µ + ( 1)n c x 2 µ c k, b µ, c,, NUT,. (D = 2n + 1)

D = 4 Kerr-NUT de Sitter metric: where g (4) = x2 y 2 X(x) dx2 + y2 x 2 Y (y) dy2 + X(x) x 2 y 2(dt + y2 dψ) 2 + Y (y) y 2 x 2(dt + x2 dψ) 2, X(x) = (a 2 x 2 )(1 + λx 2 ) + 2Mx Y (y) = (a 2 y 2 )(1 + λy 2 ) + 2Ly Ric (4) µν = 3λg(4) µν a : angular momentum, M : mass, L : NUT Bolyer-Lindquist coordinate (x, y, ψ, t) (r, θ, ϕ, τ ) x = 1r, y = a cos θ, ψ = ϕ/a, t = τ aϕ

D = 5 Kerr-NUT-de Sitter metric where g (5) = x2 y 2 X(x) dx2 + y2 x 2 Y (y) dy2 + X(x) x 2 y 2(dt + y2 dψ 1 ) 2 + Y (y) y 2 x 2(dt + x2 dψ 1 ) 2 a2 b 2 x 2 y 2 ( dt + (x 2 + y 2 )dψ 1 + x 2 y 2 dψ 2 ) 2 X(x) = 1 x 2(a2 x 2 )(b 2 x 2 )(1 + λx 2 ) 2M Y (y) = 1 y 2(a2 y 2 )(b 2 y 2 )(1 + λy 2 ) 2L R (5) µν = 4λg(5) µν a, b : angular momenta, M : mass, L : NUT

D = 6 Kerr-NUT-de Sitter metric g (6) = (x2 y 2 )(x 2 z 2 ) dx 2 + (y2 x 2 )(y 2 z 2 ) dy 2 + (z2 x 2 )(z 2 y 2 ) dz 2 X(x) Y (y) Z(z) X(x) + (x 2 y 2 )(x 2 z 2 ) (dt + (y2 + z 2 )dψ 1 + y 2 z 2 dψ 2 ) 2 Y (y) + (y 2 x 2 )(y 2 z 2 ) (dt + (z2 + x 2 )dψ 1 + z 2 x 2 dψ 2 ) 2 Z(z) + (y 2 x 2 )(y 2 z 2 ) (dt + (x2 + y 2 )dψ 1 + x 2 y 2 dψ 2 ) 2 where X(x) = (a 2 x 2 )(b 2 x 2 )(1 + λx 2 ) 2Mx Y (y) = (a 2 y 2 )(b 2 y 2 )(1 + λy 2 ) 2L 1 y Z(z) = (a 2 z 2 )(b 2 z 2 )(1 + λz 2 ) 2L 2 z R (6) µν = 5λg(6) µν a, b : angular momenta, M : mass, L 1, L 2 : NUT s

CKY 2-form [Kubiznak-Frolov (2007)] h = n dψ k dσ k = k=1 n x µ e µ e µ+n µ=1 σ k = σ k (x 1,, x n ) : M D R n Killing K (j) ( Carter ): h = h (j) h h = f (j) h (j) = K (j) ab f a (j) f (j) b (j = 0,, n 1) Killing η (j) ξ a (δh) a = η (j) a K (j) ab ξb (j = 0,, n 1 + ϵ) C (j) = K (j) ab pa p b, C (j) = η (j) a p a

D Kerr-NUT-de Sitter [Frolov-Krtous-Kubiznak 2007] Klein-Gordon [Frolov-Krtous-Kubiznak 2007] Dirac [Oota-Y.Y. 2008] [Kunduri-Lucietti-Reall 2006, Murata-Soda 2008, Oota-Y.Y. 2009]

Kerr-NUT-de Sitter Klein-Gordon [Sergyeyev-Krtous 2008] O K (i) = a K (i)ab b, O η (j) = η (j) Dirac [Benn-Kress 2004, Cariglia-Krtous-Kubiznak 2011] O h (i) = γ a h (i) a + αδh (i), O η (j) = η (j)a a + βdη (j)

3. (CKY) [Houri-Oota-Y.Y 2007, Krtous-Frolov-Kubiznak 2008] CKY 2-form h dh = 0, Einstein Kerr-NUT-de Sitter. Einstein : Kerr-NUT-de Sitter : Einstein-Kähler M 1 M 2 M N where N = #{CKY }, dimm i =.

Einstein [Houri-Oota-Y.Y 2009] g = n µ=1 dx 2 µ P µ (x) + n P µ (x) µ=1 ( n 1 k=0 σ k (ˆx µ )θ k ) 2 + N n (x 2 µ ξ2 i )g(i) i=1 µ=1 g (i) m i Kähler. P µ (x) = X µ N i=1 (x2 µ ξ2 i )m i Uµ, U µ = n ν=1 (ν µ) (x 2 µ x2 ν ) X µ = b µ x µ + x µ xµ θ k 1-form 0 n N a k y 2(k 1) (y 2 ξ 2 i )m i dy. k=1 i=1 dθ k + 2 N i=1 ( 1) k+n ξ 2n 2k 1 i ω (i) = 0, k = 0, 1,, n 1.

2 (a) (b) CKY CKY ( Einstein ( CKY

3-2 CKY (GCKY) 11 10 (typei, typeii, hetero...) (a) Ricci, Calabi-Yau (b) Special CKY Einstein, -Einstein (c) Flux)

SUGRA (a) R 1,p (, AdS p+2 (Special CKY ) (b) CKY GCKY)

GCKY? SUGRA GCKY SUSY ϕ (BPS

(A) D=5 Minimal Gauged Supergravity S = d 5 x g (R + 12g 2 14 ) F µνf µν M 5 + 1 3 F F A 3 M 5 Chong-Cvetic-Lu-Pope ( ) GCKY=CKY with T = F ( 3-form) Klein-Gordon Dirac

(B) S = d D x g e (R ϕ + µ ϕ µ ϕ 14 F µνf µν 16 ) H µνλh µνλ M D [D=4: Sen 1992, : Chow 2010] GCKY=CKY with T = H( 3-form) Klein-Gordon Dirac (C) 4,5,6,7 [Chow 2008-2010]

GCKY Yano-Bochner(1953) Curvature and Betti Number Kubiznak-Kundri-Y.Y (2009) Rank-2 GCKY: T X h = 1 p + 1 i(x)dt h 1 D p + 1 X δ T h (d T e a T e a, δ T = d T ) T a h bc + T b h ac = 2g ab ξ c g cb ξ a g ca ξ b, ξ a = 1 T 3-form T = (T abc ) D 1 T b hb a (Γ T ) a bc = Γa bc + 1 2 T c ab

GCKY d T closed GCKY δ T closed GCKY Killing-Yano with torsion Hodge d T closed 2-form h h = h (j) h h = f (j) h (j) = K (j) ab f a (j) f (j) b [K (i), K (j) ] = 0, ( Klein-Gordon, Dirac [Houri-Kubiznak-Warnick- Y.Y 2010]

Rank-2 closed GCKY D. (1) CKY (T = 0): {Kerr-NUT-de Sitter } ( N i=1 M i) (2) GCKY (T = T 0 0): Kahler [Apostolov et.al, 2002-2005] Sasakian, Calabi-Yau [Houri-Kubiznak-Warnick-Y.Y 2011] D = 2n Hermitian, D = 2n + 1 CR. D = 2n T = T 0 + T B. T B Hermitian (M, g, J) B g = 0, B J = 0 Bismut (3-form).

g = g ab dx a dx b = {e a } ( ) = [e a, e b ] = f c ab e c ( ) = a and T a ( ) = R abcd and R T abcd ( ) (1) GCKY {e µ, eˆµ } h = n µ=1 x µe µ eˆµ GCKY T a h bc = g ab ξ c g ac ξ b R T abcd h de R T abed h dc = g ae T b ξ c + g bc T a ξ e + ξ e T abc {e c}

(2) [e µ, e ν ]= x ν Qν x 2 µ x2 ν e µ x µ Qµ x 2 µ x2 ν e ν, [e µ, eˆµ ]=K µ e µ + L µ eˆµ + ν µ ( 2xµ Qν x 2 µ x2 ν T µˆµˆν ) eˆν, [e µ, eˆν ]= x µ Qµ x 2 µ eˆν, [eˆµ, eˆν ] = 0 x2 ν Q µ = X µ(x µ ) n, U µ = (x 2 µ U x2 ν ) µ ν=1(ν µ) K µ, L µ, T µˆµˆν ( : T µˆµˆν = K µ = 0, L µ = µ Qµ = Kerr-NUT-de Sitter

Hermitian (g, J, Ω) Bismut g 2 Ω: g = n (e µ e µ + eˆµ eˆµ ), Ω = µ=1 n mu=1 e µ eˆµ J: J(e µ ) = eˆµ, J(eˆµ ) = e µ [J(e a ), J(e b )] [e a, e b ] J([e a, J(e b )]) J([J(e a ), e b ]) = 0 Bismut T B = (T B abc ) T B abc = dω(j(e a), J(e b ), J(e c ))

e µ = dxµ Qµ, eˆµ = ( n R µ σ k 1 (ˆx µ )dψ k 1 Φ n S ν n σ k 1 (ˆx ν )dψ k ) k=1 ν=1 k=1 3-form T = T 0 + T B Qν T 0 = 2x µ x 2 µ e µ eˆµ eˆν, x2 ν ( Q µ R ν T B = µ log Φ + 2x ) µ Qν R µ x 2 µ e µ eˆµ eˆν x2 ν 3n 1 : X µ = X µ (x µ ), Y µ = Y µ (x µ ), Z µ = Z µ (x µ ) Q µ = X µ U µ, R µ = Y µ U µ, S µ = Z µ U µ

D (g ab, ϕ, H abc, F ab ) H =db A da (3-form) F =da (2-form) : R ab a b ϕ F c a F bc 1 4 H cd a H bcd = 0 d(e ϕ F ) = e ϕ H F, d(e ϕ H) = 0 ( ϕ) 2 + 2 2 ϕ + 1 2 F abf ab + 1 12 H abch abc R = 0

H=T ( (a) Kerr-Sen BH X µ = Y µ = n 1 k=0 n 1 c k x 2k µ + b µx µ, Z µ = qx µ + k=0 d k x 2k µ (b) CYT (Calabi-Yau with torsion) X µ = 1 4 Hol( T )=SU(n) n 1 k=0 c k x 2k 2 µ, Y µ = n 1 k=0 c k x 2k µ, Z µ = HKT (Hyper Kähler with torsion) n 1 k=0 d k x 2k µ

1. 2. 3. (CKY) 4. CKY (GCKY) CKY (with torsion) SUGRA Hermitian CKY 2-form. SUGRA. GCKY.

5. Einstein Page (1978): 4 Kerr-de Sitter CP(1) S 2 Einstein Page S 2 bundle over Einstein-Kähler [Berard-Bergery 1986, Page-Pope 1987] S 3 bundle over CP(1) [Hashimoto-Sakaguchi-Y.Y. 2004] S n bundle over CP(1) [Gibbons-Lü-Page-Pope 2004] S n bundle over Einstein-Kähler [Lü-Page-Pope 2004] CKY

D Kerr-NUT-de Sitter CKY : {α A }={, NUT, } CKY : {α A } {ξ i } ξ i CKY M = {Kerr-NUT-de Sitter} N M i N = #{ξ i }, M i : Kähler-Einstein, dim M i = ξ i i=1

Einstein g = n µ=1 dx 2 µ P µ (x) + n P µ (x) µ=1 ( n 1 k=0 σ k (ˆx µ )θ k ) 2 + N n (x 2 µ ξ2 i )g(i) i=1 µ=1 g (i) m i Kähler. P µ (x) = X µ N i=1 (x2 µ ξ2 i )m i Uµ, U µ = n ν=1 (ν µ) (x 2 µ x2 ν ) X µ = b µ x µ + x µ xµ 0 n N a k y 2(k 1) (y 2 ξ 2 i )m i dy. k=1 i=1

M {a k } = {α A } {ξ i }. : a 1 x 1 a 2 x 2 : ( q k (a 1,, a n ) pa k m + 1 A k log f m+1 A k (1 t) δ n l=1 (1 ta l) = f i (A 1,, A n )t i, A k = 1/(1 a 2 k ) i=0 M = {Kerr-NUT-de Sitter} N N M i = M = ( M i ) i=1 i=1

7-dim. Einstein metrics on S 5 -bundle over CP(1) {a 1, a 2, a 3 } (q 1, q 2, q 3 ) Z Z Z q 1 =a 1 (a 2 2 1)(a2 3 1)(3 a2 1 2a2 2 2a2 3 + a2 2 a2 3 + a2 1 a2 2 a2 3 )/ q 2 =a 2 (a 2 1 1)(a2 3 1)(3 a2 2 2a2 1 2a2 3 + a2 1 a2 3 + a2 1 a2 2 a2 3 )/ q 3 =a 3 (a 2 1 1)(a2 2 1)(3 a2 3 2a2 1 2a2 2 + a2 1 a2 2 + a2 1 a2 2 a2 3 )/ =3 3a 2 1 + a4 1 3a2 2 + a2 1 a2 2 + a4 2 3a2 3 + a2 1 a2 3 + a2 2 a2 3 + 6a2 1 a2 2 a2 3 3a 4 1 a2 2 a2 3 3a2 1 a4 2 a2 3 + a4 1 a4 2 a2 3 + a4 3 3a2 1 a2 2 a4 3 + a4 1 a2 2 a4 3 + a2 1 a4 2 a4 3

7-dim. Einstein metrics on S 5 -bundle over CP(1) 150 100 200 50 0 200 150 100 50 0 0 50 100 150 200

9-dim. Einstein metrics on S 5 -bundle over CP(2) 60 40 20 60 40 20 20 40 60

BPS [Hashimoto-Skaguchi-Yasui, 2004] = CKY : x µ 1 + ϵy µ, ϵ 0 Odd dim. Kerr-NUT-de Sitter = Sasaki-Einstein metrics Even dim. Kerr-NUT-de Sitter = Calabi-Yau metrics

CKY 2-form Einstein [Oota-Y.Y 2010] B: Einstein-Kähler manifold with c 1 (B) = pα H 2 (B, Z), p Z >0. P k1,k 2,,k n : T n bundle over B classified by integers (k 1,, k n ) M (ϵ) k 1,k 2,,k n (ϵ = 0, 1): S 2n ϵ bundle over B associated with P k1,k 2,,k n THEOREM 1. If k α are positive integers satisfying 0 < k 1 + k 2 + + k n < p, then M (0) k 1,k 2,,k n admits an Einstein metric with Λ > 0. THEOREM 2. If k α are positive integers, then M (1) k 1,k 2,,k n admits an Einstein metric with Λ > 0. Especially, if k 1 + k 2 + + k n = p, then M (1) k 1,k 2,,k n admits a Sasaki-Einstein metric.