PowerPoint プレゼンテーション

Similar documents
MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e +

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

untitled

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

rcnp01may-2

LHC-ATLAS Hà WWà lνlν A A A A A A

J-PARC October 14-15, 2005 KEK

nakajima_

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

untitled

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

Electron Ion Collider と ILC-N 宮地義之 山形大学

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not


Mott散乱によるParity対称性の破れを検証

nenmatsu5c19_web.key

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

Drift Chamber

Microsoft PowerPoint - okamura.ppt[読み取り専用]


24 Depth scaling of binocular stereopsis by observer s own movements

1..FEM FEM 3. 4.

COE

Hasegawa_JPS_v6


Microsoft PowerPoint - 島田美帆.ppt

km_atami09.ppt


21 Effects of background stimuli by changing speed color matching color stimulus

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

技術研究報告第26号

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple


スライド 1

28 Horizontal angle correction using straight line detection in an equirectangular image

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

NotePC 8 10cd=m 2 965cd=m Note-PC Weber L,M,S { i {

news

浜松医科大学紀要

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

udc-2.dvi

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

JPS_draft.pptx

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

Solar Flare neutrino for Super Novae Conference

.N..

Slide 1

<95DB8C9288E397C389C88A E696E6462>

4/15 No.

main.dvi

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

鉄鋼協会プレゼン

TeV b,c,τ KEK/ ) ICEPP

1 2 3

31 33

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

PowerPoint Presentation

ProVisionaire Control V3.0セットアップガイド

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

h23w1.dvi

02-量子力学の復習


21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011

光学

25 3 4

2015 ( 27 ) RFID RF RFID, 2., 3., 4. i

Corrections of the Results of Airborne Monitoring Surveys by MEXT and Ibaraki Prefecture

Canvas-tr01(title).cv3

PowerPoint Presentation

日立金属技報 Vol.34

XFEL/SPring-8

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

™…

こんにちは由美子です

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

I N S T R U M E N T A T I O N & E L E C T R I C A L E Q U I P M E N T Pressure-resistant gasket type retreat method effective bulk compressibility Fro

音響部品アクセサリ本文(AC06)PDF (Page 16)

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

05/09/2009


目次 T2K 実験 ニュートリノ振動解析 外挿 ( 前置検出器 後置検出器 ) の 手法 Toy MCによるデモンストレーション まとめ 2

J-PARC

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

燃焼圧センサ

untitled

Transcription:

The result of the MEG experiment with the full dataset (+ MEG II status) Daisuke Kaneko, on behalf of the MEG collaboration

Contents 1. µ eγ Decay 2. MEG Instruments 3. Analysis and Result 4. MEG II experiment

1. μ eγ Decay

Flavor of Particles 4 Quark ~ ~ u c ~t u c t Lepton ~ ~ e µ e µ τ ~ τ ~ CKM Matrix d ~s ~ b d s b ~ ν e ν e ~ ν µ ν µ PMNS Matrix ~ ν τ ν τ

μ + e + γ : undiscovered decay 5 Forbidden in Standard Model (Lepton flavor conservation law) It is possible, with neutrino oscillation, probability is < 10-50 no exist practically μ e γ via ν-oscillation Promising theories beyond SM predict accessible probability see-saw mechanism SUSY-GUT etc. μ e γ via SUSY particle

10-12 ~10-14 is predicted 6 before MEG MEG Antusch et al., J. HEP 2006(11), 090 (2006) SU(5) + seesaw different colors correspond different θ 13 value (already discovered to be ~9 ) L. Calibbi et al. Phys. Rev. D 74, 116002 (2006) SO(10) + seesaw green : PMNS case, red : CKM case tanβ = 10, as function of M 1/2

History of μ e γ search 7 1936 Discovery of μ 1947 First search with cosmic-ray μ is not an excited state of e 1950s μ eγ search with accelerator 1970s search with meson factories Concept of lepton flavor Rumor of discovery, but not true Crystal Box 1.7 10-10 1984 @LAMPF MEGA 1.2 10-11 1999 @ LAMPF

Signal & BackGround 8 Signal 52.8 MeV = m μ /2, back-to-back, at the same time. BackGrounds Raditive Muon Decay (RMD) μμ + e + νν μμ νν e γγ ACCidental BG (ACC) R BG R μ2 δe e (δe γ ) 2 δω/4π δt - e + from normal µ+ decay - γ from RMD or annihilation of e + Type Eγ Ee+ Time Angle Signal 52.8 MeV 52.8 MeV Te = Tγ 180 RMD <52.8 MeV <52.8 MeV Te = Tγ 180 ACC <52.8 MeV 52.8 MeV uniform no correlate

2. MEG Instruments

Location of experiment 10 Kanton Aargau Switzerland CERN

PSI experimental hall 11 target E UCN main ring cyclotron target E neutron Wien filter control magnets πe5 spec. at entrance Intensity 10 8 /s Momentum Solid angle 28 MeV/c ± 5-7% 150 mstr proton therapy πe5 area Beam Transport Solenoid Spot size Angular divergence V: 15mm H: 20mm V: 450 mrad H: 120 mrad

BTS & Target 12 Beam Transport Solenoid Degrader no-scale He-cooled Superconducting magnet to conduct µ beam on target hole Φ1cm cross-marker μ + stopping target 199 A, 2.4 T (nominal) Requirement Must stop µ +, but must not interrupt e + Put thin film with angle Design 8 cm 20 cm ellipse 20.5 slant angle Stacked PE & PS, 205 µm

MEG detector 13 COBRA Magnet Timing counter Drift chamber z y x μ + beam target y x z Liquid xenon detector

Liquid Xe γ-ray detector 14 Liquid Xenon? Rare-gas scintillator Fast, Many photon Heavy as a liquid Homogeneity No self-absorption Many applications in high-energy experiments Difficulty in application Handle low-temp liquid (T~165 K) Control pressure (ΔP < 0.01 atm ) Detect Ultra-violet light (λ ~ 175 nm) phase diagram of xenon Hamamatsu R9869 Photo-multiplier

LXe detector design 15 Inside of the detector Characteristics Total 900 l LXe C-shaped cryostat 846 PMTs on 6 face Honey-comb window at γ- ray entrance face Cooled with pulse tube refrigerator 2 kinds of purification systems equipped 200 W pulse tube refrigerator

LXe detector γ-ray calibration 16 Main γ calibrations A. Cockcroft-Walton (CW) accrlerator target of Li 2 B 4 O 7 14.8, 17.6 MeV B. Neutron generator Ni(n,γ)Ni reaction 9.0 MeV C. Charge exchange π - + p π 0 + n π 0 γ + γ CW accel. PSI πe5 p ビーム Li target BGO detector LXe detector H 2 ターゲット μ + beam π - beam neutron source + Ni

π 0 calibration 17 2γ from the reaction π 0 γ + γ By selecting back-to-back γ pair, concentrated energy γ can be selected. Most important calibration, since 55 MeV is near signal. BGO detector is small and movable, to scan all acceptance of LXe. Energy [MeV] 80 70 60 50 150 160 83MeV 55MeV opening angle [ ] 170 180 LH2 target NEW LXe Detector γ γ BGO π - beam COBRA Timing counter

γ-ray resolutions 18 42% 58% σ up 2.3% σ up 1.6% Fit 55MeV peak with response function considering Correlation of 2γ angle and energy Difference of noise condition Detector acceptance is divided into small parts and fit each. When γ-ray convert at shallow part of the detector, energy resolution is worse Position resolution is evaluated with lead collimator. to be 5 mm σ in u, v direction and 6 mm σ in w direction.

COBRA magnet 19 Uniform B-field e + emitted in θ~90 θ vs radius of track reduce pile up Gradient B-field low momentum e + s are isolated Characteristics Combination of SC magnets with different bore size Thin that γ-ray to transmit Cooled by GM refrigerator Compensation magnet which reduce field at LXe detector

2 0 2. 0 4 4 2 6. 6 5 5 0 6. 1 5 0 0 1. 1 1 Drift chamber e + tracker 20 Interaction of e + and matter: Multiple scattering Worsens angular resolution Pair annihilation Generate γ-ray background High-rate tolerance: High rate μ + s in beam eventually decay into e + s. Low mass tracker 16 modularized detector in φ direction Detector locate only at large R drift cell

e + track reconstruct 21 Hit detection by waveform analysis Reconstruct hit in each cell Ratio of charge on each side Detail z-position by vernier Connect neighboring hits First fit by circle Main fit of track Kalman Filter algorism is used (Fit error in each event is utilized in final physics analysis )

Positron observables 22 Positron energy resolution (σµ e ) is obtained by fitting spectrum of normal μ decay with response function. 1 theoretical spectrum 2 acceptance function 3 resolution function 1 3 Double turn method is adopted to evaluate energy, position and angular resolutions. Independently propagate 1 st and 2 nd turn of genuine track. 2 Resolutions are largely affected by operation condition of DCH, but roughly Ee ~ 300keV, θe φe ~ 10mrad, ye ~ 1.3 mm, ze ~ 3.0mm

e+ timing counter 23 φ counter BC404 scintillator 4 4 79.6 cm3 15 bars on each side PMT read-out on both end (Fine mesh type) Assembled φ counter (one of two) z counter BCF-20 scintillation fiber Total 256 pcs. APD readout at one end ( z counter is not used) Roll of timing counter Precise measurement of e + hit time Provide information for trigger

Timing reconstruction 24 From the PMT hit time at TIC both end, hit position and time at TIC bar is calculated. Emission timing of positron needs track information (L track ). te tt TIC = tt IN + tt OUT LL bar 2 2vv zz TIC = vv 2 (tt IN tt OUT ) t TIC t in t out Time-walk effect of PMT is corrected in tt IN, tt OUT. Final timing observable is defined as, tt eeee = tt LXe rr γγ rr μμ cc tt TTTTTT LL track cc

Timing resolution 25 Timing resolution is evaluated with RMD data, where all the γ-ray detector, positron detector, trigger are the same as the data for μeγ physics data. (Eγ, Ee correlation on teγ need to remove) RMD events peak σ eγ = 122 ± 4 ps Accidental resolutions for each component σtγ ~ 65 ps σte ~ 100 ps

Efficiencies 26 γ-ray detection efficiency 62.5±2.3%, for γ from target aiming at detector acceptance Loss: material between (COBRA, cryostat wall, PMT etc) leakage of electro-magnetic shower positron detection efficiency 48% from Monte Carlo simulation. It is not needed in physcis analysis Trigger efficiency After improvement in 2011 trigger rate13hz Live Time ratio 99% Selection efficiency 97%

3. Analysis and Result

History of MEG 28 design 2000 construction 2004 2008 2012 2016 data taking 1999 PSI proposal Approval Old 2007 Detector Complete New 2010 Nucl. Phys. B 834 1 2.8 x 10-11 (90%CL) 2011 Phys. Rev. Lett. 107, 171801 2.4 x 10-12 (90%CL ) 2013 Phys. Rev. Lett. 110, 201801 5.7 x 10-13 (90%CL ) 加速器休みメンテナンス等 2009 2010 2011 2012 2013 新しく解析に用いたデータ 通算データ量 93 TB 通算 DAQ 時間 288 日通算 run 数 124156 (~2000 event/run) 通算静止 μ + 数 7.5 10 14

Event selection 29 Firstly, apply pre-selection in order to obviously accidental events. Then, detailed calibration is done on passed events Final event selection is defined as, 48 < Eγ < 58 MeV 50 < Ee < 56 MeV teγ < 0.7 ns θeγ < 50 mrad φeγ < 75 mrad Region teγ < 1.0 ns is blinded at first. Parameter for physics analysis is determined by outside (sideband) events. Signal events will concentrate around here, if exist. RMD

Likelihood analysis 30 Definition of MEG likelihood function L NN sig, NN RMD, NN ACC, tt = ee NN NN obs! CC(NN RRRRRR, NN AAAAAA, tt) NN obs (NN sigss xx ii, tt + NN RMDRR xx ii + NN ACCAA xx ii ) ii=1 extended likelihood PDF constraint term NN = NN ssssss + NN RRMMMM + NN AAAAAA tt: Target parameter NN oooooo : Event number in window xx : (EE γγ, EE ee, tt eeee, θθ eeee, φφ eeee ) SS, RR, AA: (Probability Density Function) CC : Constrain NN RMD NN ACC around expectation in side band Best fit value is defined by such that maximized likelihood function Confidence interval is determined with Feldman-Cousins approach, setting Nsig as the main parameter, and profiling out the others.

Probability to find the observable to be the value PDF when Signal, RMD, AccBG happens. 31 Determined from sideband data (partially Monte Carlo simulation) All known correlations between observables, detector position etc. are corrected. event-by-event PDF Shape of function changes, according to Error in reconstruction Position in detector Correlation -50-0.5 0 0.5 (ns) θθ eeee tt eeee EE ee EE γγ 0 50-75 (mrad) 51 53 55 (MeV) 50 52 54 56 (MeV) φφ eeee 0 75 (mrad) 緑 : Signal 赤 : RMD 桃 : ACC 青 : sum Examples in certain events

Target Position 32 Target Δz t r e + non-scale When r ~ 10 cm Δz t ~ 1 mm, Δ φ e Drift Chamber Δφe ~ 10 mrad (φe reso. 10mrad) There are 2 methods 1. Optical method next page 2. Software method Utilize correlation of apparent hole position depends on position direction. true hole y true target Δz t Δy assumed target z t e + ΔY ~ tan(φ) ΔP + offset

Target measure 2 33 0 1 5 6 3 4 Measure target with theodolite. Conventionally fit is done with plane, but expanded to paraboloid fit. 2009-2011 data can be seen as plane, but 2012, 2013 data has large strain. Horizonal Cross marker Plane fit Paraboloid fit Hole position Vertical 2008 2009 2010 2011 2012 2013 2014 年

Deformation & countermeasure 34 For detail investigation 3D laser scan was performed in 2015. As the result, deformation of complex shape was found, but around the beam-spot, paraboloid is a good approximation. Countermeasure : 1. In trac reconstruction, set start point of e + (=μ stopped point ) to be fitted paraboloid (previously fitted plane) 2. Remaining uncertainties = position local shape are taken into account as nuisance parameters. 2013 paraboloid Result of 3D scan

Target uncertainty 35 Shift center of φeγ PDF for Signal event PDF. Parallel shift Paraboloid of 3D scan Δμμ φφ = Δ μμ φφ eγγ pp, φφ e + ss[δ FARO φφ eγγ xx e, yy ee Δ para φφ eγγ xx e, yy ee ] p : Parallel shift parameter s : Local shape parameter 0 ~ 1 Paraboloid ~ 3D scan p and s are independent for each year, Δ FARO is scaled to match with curvature of paraboloid fit. p is constrained by Gaussian dist. centered at 0 (error 300 (500) um) s is constrained in [0,1] for 2013, narrower region for previous years. Impact on sensitivity: Sensitivity is worsened by13% in sensitivity. This is largest systematics, and the others occupy only 1%.

positron AIF recognition γ estimation LXe detector γ observation (Annihilation in Flight) Δθ AIF Δφ AIF AIF point target Drift CHamber Δθ AIF correct Δφ AIF Δt AIF AIF pair random AIF pair 36 Tag one of the sources of γ-ray, positron AIF A. Recognize interrupted e + track in drift chamber B. Estimate γ-ray momentum from that before AIF C. Calculate angle difference between estimation and observation

AIF reduction and impact 37 Sharp peak in Δθ AIF, Δφ AIF distribution is really tagged AIF events. Cut events near peak. Precise shape of Δt AIF distribution is difficult to obtain. It is used only for rough cut. Method : 1. Fit 2D distribution Δθ AIF, Δφ AIF with combination of 2D Gaussian function. (2 peak and 1 base component.) 2. Remove events within 0.7σ from either of the peaks, as they are likely to be AIF Accidental BG. Impact : No significant improvement in sensitivity. Insurance for AIF event to come near center of window.

Normalization A constant to convert event number 38 and μ + e + γ branching ratio B μμ + e + γγ = Γ μμ+ e + γγ Γ TOTAL = NN sig kk Norm. factor k is considered to be a number of events multiplied with detector acceptance and detection efficiency, There are independent 2 ways, Michel positron way and RMD way. Final value is given by combining two. Both ways do not need e + detection efficiency. For all statistics of MEG data, k = 1.71±0.06 10 13

Search sensitivtiy 39 median 2009-2013 Sensitivity 5.3 10-13 90% CL Upper Limit Arrows are limit from time sideband ( -2.0ns, +2.0ns) 8.4 10-13, 8.3 10-13 Histogram of upper limits of many Toy MCs which do not contain signal. Data set 2009-2011 2012-2013 2009-2013 k ( 10 12 ) 8.15 8.95 17.1 Sensiti vity ( 10-13 ) 8.0 8.2 5.3 (90% CL) Previous publication(2009-2011) Sensitivity was 7.7 10 13 Understandable, considering the changes in analysis.

Event distribution full data 40 Excess of the signal is not seen. 2009-2013 cosθ < -0.99963 (90% ε signal ) teγ < 0.2443ns (90% ε signal ) 51 < Eγ < 55.5 MeV (74% ε signal ) 52.385 < Ee < 55 MeV (90% ε signal ) Contours show averaged signal PDF (1σ,1.64σ,2σ)

tt eeee EE γγ EE ee θθ eeee Data set Fit result 41 2009-2013 full data data sum ACC RMD Data and projected PDF agree well. 2009-2011 2012-2013 signal (500events) 2009-2013 best fit BB ( 10-13 ) -1.3-5.5-2.2 φφ eeee Indication for signallikelihood R sig SS(xx ii ) RR sig = 0.07RR(xx ii ) + 0.93AA(xx ii )

Confidence interval 42 Consistent with no signal assumption Data set BB 90% UL ( 10-13 ) Sensitivit y ( 10-13 ) 2009-2011 2012-2013 2009-2013 6.1 7.9 4.2 8.0 8.2 5.3 B(μμ + ee + γγ) < 4.2 10-13 (90% CL) In previous result, 5.7 10-13 with 2009-2011 data. Consistent including change in analysis. CL curve with 2009-2013 data (Ratio of ToyMC with λλ pp MC < λλ pp data )

Move of the observables 43 High rank event in either (current/previous) of results are plotted. Previous Current We tested MC experiment to simulate move of observables and compared upper-limits. Data located around the center of the MC distribution.

Fit result constrain 44 Usual likelihood function contains constraint term for N RMD と N ACC to be near to the estimation from sideband. CC NN RMD, NN ACC, tt = exp NN RMD μμ RMD 2 2 exp NN ACC μμ ACC 2 2σσ RMD 2 cc( tt) 2σσ ACC In order check the BG distribution in analysis window, fit without constrain term were tested. 2009-2013 expect 7743.7 ±41.2 N fit no constr. 7684.4 ±103 ACC standard fit 7739.1 ±37.7 expect 614.4 ±33.8 N fit no constr. 663.3 ±59.1 RMD standard fit 624.6 ±28.4

4. MEG II experiment

MEG II experiment 46 Upgrade aiming at 10 times higher sensitivity of MEG Main features 2.3 times stronger beam target not easy to deform Replace PMT of inner face of LXe with MPPC Unified, larger volume, stereo wired drift chamber Pixelated timing counter with SiPM read out New detector to tag RMD AccBG Expected sensitivity is 4 10-14

MEG II status 47 Xenon detector Drift chamber Timing counter 組み立て中 一部張らせているワイ ヤーが見える 片側のみ 半分の列数 をもつプロトタイプ RDC counter LYSO結晶+プラシンの検出器と 可動式のマウント 約4000個の紫外線に 感度のあるMPPCが取 り付けられているとこ ろ

MEG II prospects 48 Specification MEG I MEG II Beam intensiy (/s) 3 10 7 7 10 7 Resolutions Eγ(%, w>2 / w<2) 2.4/1.7 1.1/1.0 γ pos. (mm, u/v/w) 5/5/6 2.6/2.2/5 Ee (kev) 306 130 θeγ/φeγ (mrad) 9.4/8.7 5.3/3.7 teγ (ps) 122 84 Efficirncies (%) trigger >99 >99 γ 63 69 e + 40 88 R&D 2013 Upgrade proposal approve assembly 2017 upgrade complete start data taking DAQ 3 years sensitivity 4 10-14 2012 2016 2020

Summary 49 MEG experiment is searching for μ + e + γ, evidence of the physics beyond the standard model of particle. MEG I experiment has been finished and we published final result Eur. Phys. J. C, 76(8), 1-30 New limit 4.2 10-13 is 30 times more stringent than MEGA experiment. MEG II experiment is aiming

おわり

近縁の CLFV 探索 51 μ-e 転換 (N μ - N e - ) 現在の上限値は SINDRUM-II 実験から B<7 10-13 (N =Au) 新しい実験の準備が進んでいる COMET, DeeMe, Mu2e μ eee 崩壊 PSI にて Mu3e 実験が準備中 これら 2 つのチャンネルは μeγ とは異なるタイプの相互作用も可能で μeγ と相補的関係にある L = mm μμ κκ + 1 Λ 2 μeγ と共通 μμ RR σσ μμμμ ee LL FF μμμμ + κκ 1 + κκ Λ 2 μμ LLγγ μμ ee LL ( ff LL γγ μμ ff LL ) μeγ には無い項

キセノン補助システム 52

エレクトロニクス 53 典型的なエレキチェーン Sensor Active splitter Trigger : FPGAを用いて高速な事象再構成を行い トリガー情報を作る 条件 : γ 線エネルギー γ-e + の時間差 γ-e + の方向 trigger rate ~13 Hz DRS : PSI で開発された波形取得装置サンプル速度 1.4GHz (DCH は 0.7GHz) Trigger DRS Online computers data size ~1 MB/event (compressed) MIDAS システム採用 : データの取得 スローコントロールを管理するシステム PSI が開発 トリガーシステムの構成

事象再構成 : 概要 54 再構成でのデータの流れ ガンマ線 キセノン検出器 γ 位置 ドリフトチェンバー e + 飛跡 陽電子 タイミングカウンター ヒット時間 γ 時間 Eγ e + 時間 角度差 θeγ φeγ 時間差 teγ

γ 線位置 時間 55 位置 ( キセノン中で最初に反応した点 ) a. 中心付近の光子数の分布を χ 2 フィット b. フィット結果の補正シャワーの大きさ 斜め入射 時間 ( キセノン中で最初に反応した時間 ) 1 点から等方的にシンチレーション光が放たれていると仮定 r i Ω i 2 χχ time = ii tt PMT,ii rr ii vv tt LXe σσ tt NN phe,ii 2 2 χχ pos = ii NN pho,ii ccω ii (uu, vv, ww) σσ ppppp NN pho,ii 2 - 和は 50 光電子以上の PMT についてとる

γ 線エネルギー 56 エネルギー各 PMT の波形の和から計算される PMT ごとの光子の伝搬時間は差し引いておく それぞれの PMT の重みは次を考慮する sum 波形 PMT のゲインと量子効率 ( 光電子の収集率も含む ) PMT がカバーする立体角 面ごとの補正係数 放出点から光電面を見込む立体角 γ の位置による不均一性の補正 pile-up unfolding 複数 γ 線のパイルアップへの対処 シンチレーション光の空間分布 sum 波形のピークサーチ

ミッシングターン復元 57 陽電子がチェンバーを複数回通過する場合 それぞれの周回が別の陽電子として識別されてしまう事があった 一つの陽電子による分かれた軌跡を識別し復元する手法を導入した 正しい原点 偽の原点 X [cm] 30 20 Run 51847, Event 1325 10 0 ドリフトチェンバー 1 st trun 2 nd trun 効果 2 周目を認識できなかったため イベント選別から漏れてしまったイベントの回復 約 4% のイベント増加 AccBG イベントの出現と消滅はほぼ同数のため BG 数に対する影響は無い e + - 10-20 - 30-40 - 30-20 - 10 0 10 20 30 40 Z [cm]

θeγ, φeγ, teγ 58 μ 粒子の初期位置 (rr μμ ) は飛跡がターゲットと交わる点とする y γ の放出角度 nn γγ = rr γγ rr μμ rr γγ rr μμ φ 角度差 (0 だと完全に反対向き ) z θ x θθ eeγγ = ππ θθ ee φφ eeee = ππ + φφ ee θθ γγ φφ γγ 時間差 tt eeee = tt LXe rr γγ rr μμ cc tt ee

PMT 再構成 59 PMT ごとのヒット再構成 constant fraction 法から ヒット時間フィルターした波形を積分して 光子数を得る Amplitude (mv) 0-5 - 10-15 - 20-25 20% Amplitude (mv) 10 0-10 67 ns - 30-20 - 35-40 height - 600-500 - 400-300 Time (nsec) - 30-600 - 500-400 - 300 Time (nsec) raw high-pass

LXe 検出器 PMT の較正 60 増倍率 ( ゲイン ) 量子効率 (QE) LED を一定の強度で点灯させる σσ NN 2 = μμ NN + σσ 0 2 (N: 光電子数 ) QQ = GG NN で電荷の関係に直すと σσ QQ 2 = GG(μμ QQ + σσ 0 2 ) α 線源 ( 241 Am) が付いたワイヤー α 線イベントで測定された光電子数と MC シミュレーションで予想される光子数の比から QE を計算する

新 γ 線位置補正 61 2015 年 レーザー測量機を用いて検出器の内外壁 PMT 取付用の構造体を測量した 結果 x 軸 : 1 mrad, y 軸 : 5 mrad 程度の回転他 図面からのズレが見つかった 対策 PMT の取付方法 + 温度変化に基づいた位置の補正を行う ( キセノンの重量による変形は無視できる ) 修正されるガンマ線位置の平均値は 角度の不確かさと同程度 ( 約 4mrad) 補正による u,v 位置の移動 (10 倍 )

ドリフトチェンバー位置合わせ 62 Optical method - 測量器各年の run 開始前精度 0.2-0.3mm (x,y) 1.5-2.5mm (z) - レーザートラッカーと corner cube 2011 年から精度 0.3mm (x,y,z) Software method - Millipede alignment 宇宙線カウンタ (CRC) を用いた特殊 run 精度 0.15mm 磁石は off CRC - Michel positron alignment 通常の陽電子 track と fit の残差が小さくなるよう最適化 CRC

規格化因子の計算 63 Michel 法 通常崩壊陽電子の個数 kk Michel = NNMichel Michel ff PP Michel Michel εε signal ee Michel EEEE εε AA signal signal signal γγ εεtrg εεsel ee εε trg RMD 法 trigger 数 輻射崩壊の個数 e + 検出効率 γ 受入効率 trigger 効率 signal 選別効率 signal kk RMD = NNRMD RMD B εε Signal ee RMD EEEE εε εε trg RMD ee εε εε sel trg signal RMD εε sel e + 検出効率 trigger 効率 signal 選別効率 どちらの方式も陽電子が検出されているイベント数からスタートするため 陽電子検出効率は既に含まれている

平均 PDF のフィットとの比較 64 角度変数を 1 次元化 event-by-event でない PDF を用いる別解析と結果を比較した フィット結果は 主方式と同様シグナルの有意な超過は無い 同じデータを別の方法で解析した上限値は多数の MC の分布の中心付近に位置する 別方式 Θ (stereo angle) PDF とデータ 本方式

High rank events 65 Rank Run Event Pair Rsig t [ps] th Ee [MeV] Eg [MeV] [mrad] ph [mrad] cos AIF 1 77431 1715 2 3.06 141.6 52.934 53.98-25.19-2.40-0.99968 15 2 195187 1856 21 2.70-75.0 53.338 51.74-0.13-9.19-0.99996 7.4 3 189150 1089 25 2.41-5.6 52.187 52.95 10.56 16.57-0.99981 5.1 4 160737 785 10 2.31 47.6 52.816 51.92 8.30 6.12-0.99995 8.3 5 56081 35 13 2.26-22.2 52.524 52.81-20.70 15.85-0.99967 10 6 167931 1076 17 2.25 415.0 53.184 53.78-7.67-23.61-0.99969 10 7 228740 1892 28 2.23 398.0 52.955 50.55-0.83-5.72-0.99998 10 8 123579 1318 15 2.23-20.7 52.806 55.13-33.56 12.99-0.99936 10 9 185612 1612 6 2.18 13.2 52.816 55.41 12.87-29.79-0.99948 10 10 87743 1484 24 2.15-80.7 52.914 52.28-18.08 23.97-0.99955 4.3 11 218877 862 14 2.11 79.2 52.782 50.59 18.64-9.77-0.99978 10 12 113706 175 7 2.10 87.9 52.078 53.01 1.64 1.43-1 10 13 185590 975 6 2.02-57.1 53.009 52.59-38.58-3.11-0.99925 3.5 14 194581 1185 17 2.01-65.1 52.703 51.83 3.86 10.88-0.99994 10 15 181128 1391 5 1.98 77.2 52.696 52.24 21.64 9.12-0.99973 15 16 193209 1452 18 1.92-310.1 52.708 54.83-3.93 12.69-0.99991 10 17 64033 592 5 1.83 157.5 53.385 49.65 19.15 6.12-0.9998 10 18 100452 1878 6 1.81-28.7 52.860 49.27-14.59 21.97-0.99965 13.3 19 111484 647 5 1.80 45.7 52.896 49.66 19.14-23.65-0.99954 15 20 84066 879 14 1.79-61.9 52.759 51.31-28.50 16.55-0.99946 10