Stereoelectronic Effect

Similar documents

tnbp59-21_Web:P2/ky132379509610002944

Nuclear Magnetic Resonance 1 H NMR spectrum PPM

2

スライド 1

Microsoft Word - 4NMR2.doc



(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

eaxys Prize lub Symposium in Japan, March 28, 2014 Profile JSPS Stephan

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

4. 炭素 炭素多重結合 不飽和炭化水素 4.1. C=C 結合 2p 2p z 4-1 2p z 2s 2p z 混成 sp 2 混成軌道 σ 結合を作る C σ π Trigonal 正三角形 + C C π 軌道 2p z 2p z C: sp 2 sp 2 : C π 電子の非局在化 安定化

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

Activation and Control of Electron-Transfer Reactions by Noncovalent Bond

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

untitled

<4D F736F F F696E74202D20974C8B4089BB8D8795A882CC97A791CC8D5C91A24850>

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

7

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a


6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

4/15 No.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

02 配付資料(原子と分子・アルカンとアルケンとアルキン).key

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =


名称未設定

untitled

研修コーナー

本文/110 国際競争時代のコストP21‐41

パーキンソン病治療ガイドライン2002

日本内科学会雑誌第97巻第7号

3/4/8:9 { } { } β β β α β α β β

untitled

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード]


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

日本内科学会雑誌第98巻第4号

02-量子力学の復習

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

ウェブ23A rev2

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

stereo_peri

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

124

TOP URL 1

Microsoft PowerPoint - 基礎化学4revPart2 [互換モード]

Microsoft Word - 信号処理3.doc

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Microsoft PowerPoint - 粉体特論2018 [互換モード]

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

TOP URL 1

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x


snkp-14-2/ky347084220200019175

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

untitled

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

8. 置換基の電子的性質 誘起効果と共鳴効果 誘起効果 Inductive Effect (I 効果 ) σ 結合を通じて伝わる極性結合と隣の結合との相互作用 電気陰性度の差が重要 1) 陰性の原子 ( 置換基 ) による場合 (-I 効果 ) δδδ+ C δδ+ C δ+ C

,,..,. 1

QMII_10.dvi

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

untitled


i

untitled

QMI_10.dvi

寄稿論文 ボロンアルドール反応の新展開 | 東京化成工業

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

yamato_2016_0915_色校_CS3.indd

eto-vol1.dvi

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

Part () () Γ Part ,

資料5:聖ウルスラ学院英智小・中学校 提出資料(1)

chap1_MDpotentials.ppt

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

28 Horizontal angle correction using straight line detection in an equirectangular image

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

Transcription:

node anti bonding M ( σ* ) A A : bonding M ( σ ) A: atomic orbital M: molecular orbital

node anti bonding M filled orbital of molecular 1 M bonding M vacant orbital of molecular 2 LUM

LUM (lowest unoccupied molecular orbital) 3 3 anti bonding σ* x bonding π' z π' y σ x M (highest occupied molecular orbital) z π z π y σ 's y x σ s

3 3 LUM Eσ * σ* x Eσ σ x p x p x M

2 2 π* z LUM anti bonding bonding π z M π' y π y π x z σ' s y σ s x

2 2 LUM Eπ * π* Eπ π p z p z M

LUM σ* x Eσ * p x Eσ σ x p x M

LUM Eσ * π* Eσ p x π p x M

Ψ 4 π* π* Ψ 3 anti bonding LUM bonding M Ψ 2 π π Ψ 1

LUM (1) M (1) LUM (2) M (2)

Nu (M) π* = (LUM) π = (M) E (LUM)

p orbital axis N M LUM θ axis θ = 109 ( Bürgi-Dunitz angle) M N LUM l axis

M-LUM M-LUM Na + LUM M l - M δ + δ - 2 Br Br 2 LUM

Ψ 1 Ψ 2 hard soft +, + = 3 Si +

cyclooctene trans cis π bond biradical θ θ θ = 0 θ = 90 60 120 120

Bredtʼs rule: (bridgehead) Ph N Me Bz Ac taxol Ac P-263,114 2

2 M π ' ' ' ' σ SP 3 ( ' ' SP 2

1) rotation about single bond ' ' ' synclinal ' antiperiplaner ' < << ' eclipsed gauche staggered (anti) ' E a eclipsed σ - E b σ - Ea + Eb = 0 rule:two-electron interactions are bonding, four-electron interactions are antibonding.

' 3 1,3-diaxial interaction ' 2 1 cis 1 3 ' 1 ' 3 allylic 1,3-strain (A strain) ' 30 '

1,3-diaxial interaction ' ' eq eq α-d-glucose β-d-glucose 1-methyl derivative ax 1,3-diaxial interaction 2 64% eq Me 2 67% 33% Me 36% pentacetyl derivative tetracetyl 1-chloro derivative Ac Ac Ac Ac Ac 2 Ac Ac Ac Ac 86% 14% Ac Ac Ac Ac Ac l 2 Ac Ac Ac 94% 6% Ac l ax electronegative group

σ-delocalisation n-σ* overlap effect anomeric effect n (M) σ* - (LUM) n antiperiplanar σ* - rule: There is a stereoelectronic preference for conformations in which the best donor lone pair is antiperiplanar to the best acceptor bond. antiperiplanar

σ σ σ (M) σ* - (LUM) ' staggered (anti) antiperiplanar rule: There is a stereoelectronic preference for conformations in which the best donor σ bond is antiperiplanar to the best acceptor bond. M: n N > n > σ -, σ - >> σ -N > σ - > σ -S > σ -hal LUM: π* = > σ* -hal > σ* - > σ* -N > σ* -, σ* -

F F staggered (anti) repulsion? F F gauche F F σ - -σ* -F interaction σ (M) F σ* -F (LUM)

Karplis 3 J 1,2 θ θ θ 0 θ = 0 θ = 90 θ = 180 σ - (M) σ* - (LUM) σ - (M) σ* - (LUM)

I. 1) S N 1 reaction of haloalkane + - 1 cation 3 cation << 3 << 3 hyperconjugation 3? σ (M) vacant P (LUM)

α Me l Me l - Me hyperconjugation n (M) vacant P (LUM)

3) reactivity and regioselectivity for the Friedel-rafts reaction Me Me Me - Me Me o p hyperconjugation n (M) Me vacant P (LUM) Ac

σ-σ* interaction short F long NMe 3 F S + NMe 3 F NMe 3 trifluoromethoxide F F F F n -σ* -F hyperconjugation σ* -F (LUM) F F F n (M)

' N 3 3 N ' N n N σ* - axis N ' ' - - N ' N ' N '

S Me S Me S S Me Me S 2 Ar S 2 Ar S 2 Ar S 2 Ar Ar 2 S S Me Ar 2 S S

exo endo Y 6-exo-tet Y 6-endo-tet θ θ = 180 tet (SP 3 ) θ = 109 θ trig (SP 2 ) θ = 60 θ trig (SP 2 )

Me N 5-endo-trig Me endo N 2 exo Me N 2 5-exo-trig N Me 2 Me 3 Na Ph 5-endo-dig Ph Ph

(1) (2) n l σ* -l l fast Br fast slow Br Br twist boat chair (1) (2) a b Br Br chair Br endo exo a b 6-endo-tet 5-exo-tet exo? twist boat

S N 2 (1) M/LUM M Y LUM Y π = (M) π = (LUM) Y Y Y Y n (M) Me 2 NPh Br N + Me 2 Ph Y Y Br N + Me 100 times faster!! 2 Ph

S N 2 (2) S + NS S NS Bn S + Bn S NS NS S + NS S NS-Et 8000 times slower!! S + S + NS NS

S N 1 (1) π = n S N 1 S N 2 π = n π = vacant

S N 1 (2) σ =,, metal ( σ delocalization σ p

Si E + Si E E Si E a Si E Si E + a b E + b Si E

σ-delocalisation Involving - bond (1) σ - σ cyclopropane cyclopropane π* = π* = cf.

σ-delocalisation Involving - bond (2) a l 2 a a b b b

σ-delocalisation Involving - bond throuh the space the center of electron-density 2 N

MgBr 2 2 M MgBr LUM σ -M (M) M Br σ* Br-Br (LUM) Br

(t-bu 2 ) 3 Sn Et Me Br 2 Br Et Me Et Me Br retention inversion σ -M (M) Sn Br σ* Br-Br (LUM) Br σ -M (M) Sn Br Br σ* Br-Br (LUM) retention inversion

1) (1) Nu Nu Nu M Nu Nu 109 2 1 π* = (LUM) Nu 1 2 Nu β-attack α-attack β α Nu * 2 1 * 2 Nu 1

(1) t-bu t-bu t-bu α- β- Li(sec-Bu) 3 B 97 : 3 NaB 4 14 : 86 bulky t-bu 1,3-diaxial interaction

α σ Nu β-attack? α-attack σ* - (LUM) Nu 2 2 1 1 α-attack? Nu Nu M ram (Felkin-Anh ) Nu S 109 M L Felkin-Anh model Nu S L L S Nu M chlation model

Nu Nu Nu β-attack twist boat + Nu α-attack Nu Nu chair

-Y Y σ* Br-Br (LUM) Br Br Br Br Br Br Br Br π = (M) Br Br σ* - (LUM) + π = (M)

Y + Y M n π = σ - p σ -Si Si

π Z -Y Z Y Z β-face π = (M) E α-face σ -Z Z Z: electron donating group Z 1 2 -Y Z * * 2 1 Y 1 2 Z Allylic 1,3-strain β-face 1 2 Z 30 1,2-strain 2 1 Z 2 120 Z 30 90 1

π t-bu trans SiMe 3 Ph t-bul, Til Me Ph 4 Me Ph t-bu σ -Si Si cis SiMe 3 Ph t-bu t-bul, Til S Ph 4 Ph t-bu Me σ -Si Me Si

π emote ontrol by F atom F σ - σ* - "" mpba F F ( 2 : 1 ) Z-isomer E-isomer

Me S Me S Me S Me S Me S σ* -S S S S Me S S Z-enolate Z-enolate Me S σ* -S 1,4-addition Me S Me S "syn-isomer" π π

β Elimination 1) E1 - + cation intermadiate 2) E2 B - B + 3) E1cB B B + -

2) E2 - + σ - (M) vacant P (LUM) σ - (M) - σ* - (LUM) B + NMe 3 NMe 3 NMe 3 NMe 3 anti: 95% Me 3 N NMe3 anti : syn = 54 : 46 σ - (M) σ* - (LUM) syn: 90% synperiplaner

NMe 3 NMe 2 92% 8% Me N Me Me S N 2 100% NMe 2

Me Me Br Br σ σ* σ σ* σ σ* σ σ* 30 60 Sp 3 anti Sp 3 syn Sp 2 anti Sp 2 syn

2 2 Ms tert-bu Ms

N N 2 / N Ts N l N 2 N N Me Ts N Me

1,2-shift σ 1 2 σ* antiperiplaner Pinacol earrangement 2 antiperiplaner 2 3 3 antiperiplaner 3 3 2 3 3 3 3 3 3

Beckman earrangement Ar σ Me N Me N σ* Ts Ar 2 Me N Ar antiperiplaner ofman earrangement Ar N NaBr Na Ar σ N σ* Br N Ar 2 N Ar antiperiplaner

σ σ LUM: π* = > σ* -hal > σ* - > σ* -N n (M) σ* - (LUM) σ (M) σ* - (LUM) antiperiplanar