i I

Similar documents
25 fmri A study of discrimination of musical harmony using brain activity obtained by fmri

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

IPSJ SIG Technical Report Vol.2017-MUS-116 No /8/24 MachineDancing: 1,a) 1,b) 3 MachineDancing MachineDancing MachineDancing 1 MachineDan

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

ばらつき抑制のための確率最適制御

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL


main.dvi

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1


Computer Security Symposium October ,a) 1,b) Microsoft Kinect Kinect, Takafumi Mori 1,a) Hiroaki Kikuchi 1,b) [1] 1 Meiji U

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

untitled

[1] SBS [2] SBS Random Forests[3] Random Forests ii

鉄鋼協会プレゼン

三石貴志.indd

3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root

20mm 63.92% ConstantZoom U 5


IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

Gaze Head Eye (a) deg (b) 45 deg (c) 9 deg 1: - 1(b) - [5], [6] [7] Stahl [8], [9] Fang [1], [11] Itti [12] Itti [13] [7] Fang [1],

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

it-ken_open.key

(255) Vol. 19 No. 4 July (completion) tcsh bash UNIX Emacs/Mule 2 ( ) [2] [9] [11] 2 (speech completion) 3 ( ) [7] 2 ( 7.1 )

研究シリーズ第40号


& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

1(a) (b),(c) - [5], [6] Itti [12] [13] gaze eyeball head 2: [time] [7] Stahl [8], [9] Fang [1], [11] 3 -

SEJulyMs更新V7

22 / ( ) OD (Origin-Destination)


, [g/cm 3 ] [m/s] 1 6 [kg m 2 s 1 ] ,58 1, ,56 1, , ,58 1,

[6] DoN DoN DDoN(Donuts DoN) DoN 4(2) DoN DDoN 3.2 RDoN(Ring DoN) 4(1) DoN 4(3) DoN RDoN 2 DoN 2.2 DoN PCA DoN DoN 2 DoN PCA 0 DoN 3. DoN

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

untitled

Run-Based Trieから構成される 決定木の枝刈り法

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

JFE.dvi

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

2005 1

SICE東北支部研究集会資料(2017年)

DEIM Forum 2012 E Web Extracting Modification of Objec

Microsoft Word JELS2009再再投稿丸島スタイル適用01_32-43a.doc

No. 3 Oct The person to the left of the stool carried the traffic-cone towards the trash-can. α α β α α β α α β α Track2 Track3 Track1 Track0 1

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,


_314I01BM浅谷2.indd

5b_08.dvi

untitled

15K01849 研究成果報告書


2 3, 4, [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,,

TC1-31st Fuzzy System Symposium (Chofu, September -, 15) cremental Neural Networ (SOINN) [5] Enhanced SOINN (ESOINN) [] ESOINN GNG Deng Evolving Self-

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

š ( š ) (6) 11,310, (3) 34,146, (2) 3,284, (1) 1,583, (1) 6,924, (1) 1,549, (3) 15,2

2) TA Hercules CAA 5 [6], [7] CAA BOSS [8] 2. C II C. ( 1 ) C. ( 2 ). ( 3 ) 100. ( 4 ) () HTML NFS Hercules ( )

untitled


21 David Marr Marr Marr Marr

IPSJ SIG Technical Report Vol.2011-UBI-30 No /5/ , 1 1 Evaluation on Effect of Presenting False Information for Biological Information Vi

main.dvi

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

fmri BCI(Brain Computer Interface) IAPS fmri(fnuctional Magnetic Resonace Imaging) Valence( ) Arousal( ) IAPS Valence ( ) 2 BCI 48 fmri SD(Semantic Di

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

知能と情報, Vol.29, No.6, pp

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

「産業上利用することができる発明」の審査の運用指針(案)

29 Short-time prediction of time series data for binary option trade

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

平成○○年度知能システム科学専攻修士論文

XFEL/SPring-8

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

Ÿ ( ) ,166,466 18,586,390 85,580,076 88,457,360 (31) 1,750,000 83,830,000 5,000,000 78,830, ,388,808 24,568, ,480 6,507,1

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

< F8CB42E696E6464>

icml10yomikai.key

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2

カルマンフィルターによるベータ推定( )

(a) (b) 2 2 (Bosch, IR Illuminator 850 nm, UFLED30-8BD) ( 7[m] 6[m]) 3 (PointGrey Research Inc.Grasshopper2 M/C) Hz (a) (b

gengo.dvi

Transcription:

Brain Computer Interface 2009 2

i 1 1 1.1.................................. 1 1.2............................... 2 1.3................................. 3 2 4 3 12 3.1 I..................................... 12 3.1.1.............................. 12 3.1.2........................ 12 3.1.3................................ 13 3.1.4.................................. 18 3.2 II..................................... 19 3.2.1.............................. 19 3.2.2...................... 20 3.2.3................................ 20 3.2.4.................................. 21 4 24 4.1................................ 24 4.2...................................... 24 25 A.1 Linear Discriminant Analysis........................ 25 A.2................................. 26 28

ii 31 32

iii 2.1 BCI................................ 5 2.2............................ 9 2.3............................... 10 2.4........................... 10 2.5................. 11 3.1 10-20...................... 14 3.2 8-13Hz........................... 14 3.3.......................... 16 3.4............................ 17 3.5 S1..................... 22 3.6 S2..................... 23 3.7 S3..................... 23

iv 2.1..................................... 6 3.1................ 15 3.2................................ 20 3.3................ 21

1 1 1.1 Brain-Computer Interface BCI 1 [1] BCI 2 Amyotrophic Lateral Sclerosis: ALS [3, 4] [5] BCI functional Magnetic Resonance Imaging fmri Near Infrared Spectroscopy NIRS Electrocorticography ECoG Electroencephalography EEG BCI EEG EEG-based BCI [6, 7] EEG-based BCI EEG Pfurtscheller Graz-BCI [8] 8-13Hz Linear Discriminant Analysis LDA [9] BCI LDA Support Vector Machine SVM [10] 1 Brain-Machine Interface BMI 2 16 7000 [2]

2 1 BCI 1 BCI 1 EEG [8, 11, 12] EEG Event-Related Desynchronization ERD 3 Single Trial [13] 1.2 BCI Forward Error Correction FEC Automatic Repeat request ARQ Hybrid ARQ HARQ HARQ Reliability-Based Hybrid ARQ RB-HARQ [14] BCI BCI Dornhege [15] 3 8-12Hz

1.3. 3 1.3 1 2 BCI 3 EEG BCI 4 BCI BCI BCI

4 2 2 EEG-based BCI EEG 2.1 BCI Quadratic Discriminant Analysis QDA Linear Discriminant Analysis LDA [10] k x k p f k (x) = f(x µ k, Σ k ) f k (x) x u k 1 2 3 FEC Forward Error Correction ARQ Automatic Repeat Request Hybrid ARQ HARQ HARQ Basic Type-I HARQ Type-I HARQ Type-II HARQ Type-I Type-II [16] HARQ Reliability-Based Hybrid ARQ RB-HARQ [14] RB-HARQ BCI 1 A.1 2 1 3 A.2

5 Intent Computer Neurons Distractions Sleepiness Classification Electrical Noise Feature Extraction Scalp EEG System Computer 2.1: BCI

6 2 2.1: H E L O 00 01 10 11 2.2 BCI HELLO {H E L O} 4 2.1 {0 1} 2.1 BCI Constant ARQ Reliability-Based ARQ RB-ARQ RB-HARQ FEC Millán [17] unknown Basic Type-I HARQ Basic RB-ARQ Constant ARQ Basic ARQ RB-ARQ t x ut T X u = {x u1, x u2,..., x ut } K x ut u k K f k (x) π k k

7 4 P (k X u ) = t ˆπ ˆf k k (x ut ) l K t ˆπ l ˆf l (x ut ) (2.1) ˆ λ 2.2 2.3 ˆk max P (k X u ) λ (2.2) k ˆk = arg max P (k X u ) (2.3) k Reliability-Based Automatic Repeat request RB-ARQ 1. k K f k (x) π k 1 X u = {x u1 } 2. 2.2 3 X u x ut 2 3. 2.3 2.2 x ut Constant ARQ Basic RB-ARQ T 2.3 X u = {x u1 x u1 R} K = {0, 1} k = 0 k = 1 2.4 2.3 2.4 λ Basic RB-ARQ T 1/T 5 2.3 x ut = ( 1 T t x ut x ut R) Constant ARQ 4 A.1 5 A.1

8 2 max k P (k x ut ) λ x ut c T c T = c 1 /T (2.4) RB-ARQ T Basic RB-ARQ Constant ARQ RB-ARQ Basic RB-ARQ Constant ARQ 2 K = {0, 1} µ 0 µ 1 σ 2 = σ 2 0 = σ 2 1 2.5 2.5 d = 0.2 d = 1 Constant ARQ Basic RB-ARQ RB-ARQ 2.5 RB-ARQ 1 1 d = µ 0 µ 1 σ d 2.6 (2.5) µ 0 µ 1 2 s 2 0 + s 2 1 (2.6) s 2 k k

9 情報源 送信機 通信路 受信機 受信者 メッセージ 送信信号 雑音源 受信信号 メッセージ 2.2:

10 2 Likelihood µ 0 µ L µ 1 x u1 2.3: µ L = (µ 0 + µ 1 )/2 1 0.9 max k P(k x u1 ) 0.8 0.7 0.6 0.5 µ 0 µ L µ 1 x u1 2.4: λ = 0.7

11 66 64 62 Accuracy [%] 60 58 56 54 52 1 2 3 4 5 6 7 8 9 10 11 Time [sec] Constant ARQ Basic RB-ARQ RB-ARQ (a) d = 0.2 100 95 90 Accuracy [%] 85 80 75 70 65 1 2 3 4 5 6 7 8 9 10 11 Time [sec] Constant ARQ Basic RB-ARQ RB-ARQ (b) d = 1 2.5:

12 3 3 RB-ARQ EEG 3.1 3.2 3.1 I 3.1.1 10-20 [18] 3.1 Pz A2 1000Hz Polymate AP216 10 10 1 12 1 A B 4 1 1 2 240 20 6 2 12 1 8-13Hz 3.1.2 22 11 2 8-13Hz

3.1. I 13 [19] 5% [20] 3.1 p p 2.3 10 3 (= 0.05/22) 3.1 3 3.2 A A B 8-13Hz 3.1.3 2 240 x k (n)(k {A, B}, n = 1, 2,..., 240) 2 n = 1, 2,..., 120 120 120 n = 121, 122,..., 240 A 1. T = 1 n = 121, k = A 2. X u x ut x k (n) 2.1 3. 2.2 2.3 T = 1 n = n+1 X u = ϕ T = T + 1 n = n + 1 n < 240 2 B k = B 10 Constant ARQ T Basic RB-ARQ RB-ARQ λ 2.5 3.3(a)(c)(e) 5 20 max k P (k x ut ) λ x ut 3.3(b)(d)(f) A C λ RB-ARQ 3.4 = 100 [%] (3.1)

14 3 Fp1 Fp2 F7 F3 Fz F4 F8 A1 A2 T3 C3 Cz C4 T4 T5 P3 Pz P4 T6 O1 O2 3.1: 10-20 35 30 Thought A Thought B Boundary 25 Frequency 20 15 10 5 0 5 10 15 20 Amplitude [uv] 3.2: 8-13Hz

3.1. I 15 3.1: A B 1 4.3E-01 2.9E-01 2 3.4E-01 1.5E-01 3 6.3E-02 2.5E-03 4 6.3E-13 7.4E-03 5 5.2E-03 2.6E-02 6 1.9E-01 1.4E-04 7 8.0E-02 3.0E-02 8 2.1E-03 5.0E-01 9 3.8E-02 3.5E-01 10 6.2E-03 7.6E-01 11 9.5E-01 6.5E-01

16 3 10 9 8 Constant ARQ Basic RB-ARQ RB-ARQ 14 13 12 Time [sec] 7 6 5 4 Amplitude [µv] 11 10 9 8 7 3 6 2 1 70 75 80 85 90 95 100 Accuracy [%] 5 MA5 Threshold MA20 Boundary 4 0 20 40 60 80 100 120 Data Number (a) Accuracy and Transmission Time (Subject A) (b) Moving Average and Threshold (Thought B at Subject A) 10 9 13 12 8 11 Time [sec] 7 6 5 4 Amplitude [µv] 10 9 8 7 6 3 Constant ARQ 2 Basic RB-ARQ RB-ARQ 1 65 70 75 80 85 90 95 100 Accuracy [%] 5 4 MA5 MA20 Threshold Boundary 3 0 20 40 60 80 100 120 Data Number (c) Accuracy and Transmission Time (Subject B) (d) Moving Average and Threshold (Thought B at Subject B) 10 9 8 14 12 Time [sec] 7 6 5 4 Amplitude [µv] 10 8 6 3 Constant ARQ 2 Basic RB-ARQ RB-ARQ 1 30 35 40 45 50 55 Accuracy [%] 4 MA5 Threshold MA20 Boundary 2 0 20 40 60 80 100 120 Data Number (e) Accuracy and Transmission Time (Subject C) (f) Moving Average and Threshold (Thought A at Subject C) 3.3:

3.1. I 17 10 9 Theoretical Value Experimental Value 8 7 Time [sec] 6 5 4 3 2 1 70 75 80 85 90 95 100 Accuracy [%] (a) Accuracy and Transmission Time (Subject A) 18 16 Theoretical Value Experimental Value 14 12 Time [sec] 10 8 6 4 2 0 30 40 50 60 70 80 90 100 Accuracy [%] (b) Accuracy and Transmission Time (Subject C) 3.4:

18 3 3.1.4 3.3(a) Basic RB-ARQ RB-ARQ Constant ARQ 3.1.2 A B A RB-ARQ T < 5 RB-ARQ T > 5 Basic RB-ARQ λ 3.3(c) RB-ARQ Basic RB-ARQ Constant ARQ 3.3(d) 20 B 10 20 Constant ARQ RB-ARQ 30 110 B Basic RB-ARQ RB-ARQ 40 50 B RB-ARQ EEG 2 [21, 22] 3.3(e) Constant ARQ Basic RB-ARQ RB-ARQ 50% 3.3(f) 90 Basic RB-ARQ RB-ARQ

3.2. II 19 λ λ A BCI C RB-ARQ 3.1 3.4(a) 2.4% 4.6% 3.4(b) 64.7% 44.2% 3.4(b) 2.5 d [23] 2 3.2 II BCI Competition BCI EEG Millán data set V [17] 1 RB-ARQ 3.2.1 3 5 10 4 3 K = {L, R, W } 15 4 C3 Cz C4 CP1 CP2 P3 Pz P4 3.1 8 512Hz 1 21 1 11 URL http://ida.first.fraunhofer.de/projects/bci/competition iii/

20 3 3.2: S1 S2 S3 C3 Cz C4 CP1 CP2 C3 Cz C4 CP1 C3 Cz C4 CP1 CP2 Pz 62.5msec 16Hz [24] 2Hz 8Hz 30Hz 96 1 3500 0.5sec 8 440 3.2.2 LDA QDA A 2 RB-ARQ A 3.2 LDA 4 1 A A A A 3.3 3 4 3.2.3 A RB-ARQ 0.5sec 1. T = 1 n = 1, k = L 2 20 5 21 1 11 URL http://ida.first.fhg.de/projects/bci/competition iii/results/martigny/irenesturm desc. txt

3.2. II 21 3.3: 5 Rank S1 S2 S3 AVG 1 79.60 70.31 56.0 68.65... 5 78.08 63.83 52.75 64.91 * 70.78 64.75 45.64 60.39 2. X u x ut x k (n) 3. T 8 2.1 4 T = T + 1 n = n + 1 2 4. 2.2 2.3 T = 1 n = n+1 X u = ϕ T = T + 1 n = n + 1 n < 240 2 T 8 0.5sec = 8 62.5msec 3 T %8 = 0 8 RB-ARQ 1 3 S1 3 3 4 3.5 3.7 16Hz T 8 2Hz T %8 = 0 λ {λ i λ i = exp( i/2) + 1, i = 0, 1,..., 49} 16Hz 2Hz 50 3.2.4 3.3 A A A A 1 3 3.5 3.7 λ

22 3 95 90 Accuracy [%] 85 80 75 2Hz 16Hz 70 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 Time [sec] 3.5: S1 16Hz 2Hz T = 8 16Hz T = 9 2Hz T 16 RB-ARQ I 1sec λ 49 1 3.5 3.7 100% I

3.2. II 23 90 85 Accuracy [%] 80 75 70 65 2Hz 16Hz 60 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Time [sec] 3.6: S2 70 65 Accuracy [%] 60 55 50 2Hz 16Hz 45 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Time [sec] 3.7: S3

24 4 4 4.1 Brain-Computer Interface BCI ALS BCI RB-ARQ I II II 4.2 BCI 2 BCI

25 A.1 Linear Discriminant Analysis k K X k = {x k x k R p } x k A.1 p { 1 f k (x) = f(x µ k, Σ k ) = exp 1 } (2π) p/2 Σ k 1/2 2 (x µ k) Σ 1 k (x µ k) (A.1) k µ k Σ k π k ˆµ k = 1 X k ˆΣ k = 1 X k 1 ˆπ k = X k / X x k X k x k x k X k (x k ˆµ k )(x k ˆµ k ) (A.2) (A.3) (A.4) ˆ X = k K X k ˆΣ = ˆΣ k ˆΣ = 1 X K k K x k X k (x k ˆµ k )(x k ˆµ k ) x u k (A.5) P (k x u ) = ˆπ k ˆfk (x u ) l K ˆπ l ˆf l (x u ) (A.6) x u ˆk ˆk = arg max P (k x u ) k (A.7) Linear Discriminant Analysis LDA Quadratic Discriminant Analysis QDA

26 T x u1, x u2,..., x ut k t P (k x u1, x u2,..., x ut ) = ˆπ ˆf k k (x ut ) l K t ˆπ ˆf l l (x ut ) (A.8) T 1 k f k (x) = f(x µ k, Σ k /T ) x ut = 1 T P (k x u1, x u2,..., x ut ) = t x ut ˆπ k ˆ fk ( x ut ) l K ˆπ l ˆ fl ( x ut ) (A.9) A.2 A.1 LDA QDA K k K x k R p X k k µ k µ S w S b ˆµ k = 1 X k ˆµ = 1 X x k X k x k x k k K x k X k (A.10) (A.11) Ŝ w = (x k ˆµ k )(x k ˆµ k ) (A.12) k K x k X k Ŝ b = k K( ˆµ k ˆµ)( ˆµ k ˆµ) (A.13) ˆ X = k K X k A.14 w R p w Ŝ b w w Ŝ ww (A.14) Ŝ 1 w Ŝ= b P AP (A.15) A P A = (diag(d 1, d 2,..., d p ) d 1 d 2 d p ) P = (u 1 u 2 u p )

A.2. 27 A.14 d 1 u 1 w Tr(A) = p i d i (A.16) T 1 k ˆ S w = Ŝw T (A.17) Tr(Ā) = T Tr(A) (A.18)

28 [1] Birbaumer, N.: Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control, Psychophysiology, Vol. 43, No. 6, pp. 517 532 (2006). [2] ALS ALS Retrieved Jan. 10th, 2009 from http://www.alsjapan.org/common/whatis/alsdata01.pdf. [3] Retrieved Jan. 3rd, 2009 from http://www.honda.co.jp/news/2006/ c060524a.html (2006 5 24 ). [4] Retrieved Jan. 3rd, 2009 from http://www.hitachi.co.jp/new/cnews/month/2006/11/1106.pdf (2006 11 6 ). [5] OCZTechnology: Retrieved Jan. 11th, 2009 from http://www.ocztechnology.com/ products/ocz peripherals/nia-neural impulse actuator. [6] Tateoka, Y., Yoshikawa, T., Furuhashi, T. and Tanaka, K.: A basic study on electroencephalogram-based control, Joint 3rd International Conference on Soft Computing and Intelligent Systems and 7th International Symposium on advanced Intelligent Systems (SCIS & ISIS 2006), pp. 1959 1962 (2006). [7] BCI Vol. J92-D, No. 1, pp. 153 161 (2009). [8] Scherer, R., Muller, G., Neuper, C., Graimann, B. and Pfurtscheller, G.: An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate, IEEE Trans. on Biomedical Engineering, Vol. 51, No. 6, pp. 979 984 (2004). [9] Hastie, T., Tibshirani, R. and Friedman, J.: The Elements of Statistical Learning, Springer (2001).

29 [10] Blankertz, B., Müller, K. R., Krusienski, D. J., Schalk, G., Wolpaw, J. R., Schlogl, A., Pfurtscheller, G., Millán, J. R., Schroder, M. and Birbaumer, N.: The BCI competition III: validating alternative approaches to actual BCI problems, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 14, No. 2, pp. 153 159 (2006). [11] Santhanam, G., Ryu, S. I., Yu, B. M., Afshar, A. and Shenoy, K. V.: A highperformance brain-computer interface, nature, Vol. 442, pp. 195 198 (2006). [12] McFarland, D. J., Sarnacki, W. A. and Wolpaw, J. R.: Brain-computer interface (BCI) operation: optimizing information transfer rates, Biological Psychology, Vol. 63, pp. 237 251 (2003). [13] Kalcher, J., Flotzinger, D., Neuper, C., Gölly, S. and Pfurtscheller, G.: Graz braincomputer interface II: towards communication between humans and computers based on online classification of three different EEG patterns, Medical and Biological Engineering and Computing, Vol. 34, No. 5, pp. 382 388 (1996). [14] Shea, J. M.: Reliability-Based Hybrid ARQ, IEE Electronics Letters, Vol. 38, No. 13, pp. 644 645 (2002). [15] Dornhege, G.: Increasing Information Transfer Rates for Brain-Computer Interfacing, PhD Thesis, University of Potsdam (2006). [16] W-CDMA Hybrid ARQ Vol. 100, No. 343, pp. 53 58 (2000). [17] Millán, J.R.: On the need for on-line learning in brain-computer interfaces, Int. Joint Conf. Neural Networks, pp. 2877 2882 (2004). [18] Jasper, H. H.: The Ten Twenty Electrode System of the International Federation, Electroencephalography and Clinical Neurophysiology, Vol. 10, pp. 371 375 (1958). [19] (2003). [20] (1997). [21] Vidaurre, C., Schlogl, A., Cabeza, R., Scherer, R. and Pfurtscheller, G.: A fully on-line adaptive BCI, IEEE Trans. on Biomedical Engineering, Vol. 53, No. 6, pp. 1214 1219 (2006).

30 [22] Sykacek, P., Roberts, S. and Stokes, M.: Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation, IEEE Trans. on Biomedical Engineering, Vol. 51, No. 5, pp. 719 727 (2004). [23] Gasser, T., Bacher, P. and Mocks, J.: Transformations towards the normal distribution of broad band spectral parameters of the EEG, Electroencephalography and clinical neurophysiology, Vol. 53, pp. 119 124 (1982). [24] Ricker, D. W.: Echo Signal Processing, Springer (2003).

31 ( ) 1. BCI 2 D Vol.J92-D, No.1, pp.153-161, 2009. 1. BCI Reliability-Based ARQ ( ) 1. H.Takahashi, T.Yoshikawa and T.Furuhashi: A Study on Application of Reliability Based Automatic Repeat Request to Brain Computer Interfaces, In Proc. the 15th Int. Conf. on Neural Information Processing of the Asia-Pacific Neural Network Assembly, pp.366-367, 2008. ( ) 1. 23 pp. 557-560, 2007. 2. Brain Computer Interface 2, vol. 107, no. 263, pp. 63-67, 2007. 3. BCI Reliability-Based ARQ 4, pp. 5-1 5-4, 2008. 4. BCI 2008, p.20, 2008.

32 COE