Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Similar documents
コホモロジー的AGT対応とK群類似

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


2011de.dvi

201711grade1ouyou.pdf

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

meiji_resume_1.PDF

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Part () () Γ Part ,

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

solutionJIS.dvi

°ÌÁê¿ô³ØII

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

研修コーナー

Z: Q: R: C: sin 6 5 ζ a, b


パーキンソン病治療ガイドライン2002

newmain.dvi

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

数学Ⅱ演習(足助・09夏)

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

1

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

,2,4

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

DVIOUT

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

30

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

D 24 D D D

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1


φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,




24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

³ÎΨÏÀ

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

kb-HP.dvi

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

1 Tokyo Daily Rainfall (mm) Days (mm)

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

2,., ,. 8.,,,..,.,, ,....,..,... 4.,..

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

ohpmain.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

日本内科学会雑誌第102巻第4号

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

: , 2.0, 3.0, 2.0, (%) ( 2.

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

2000年度『数学展望 I』講義録


Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

agora04.dvi

Z: Q: R: C: 3. Green Cauchy

Lecture note 10: II Osaka Institute of Technology

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

i

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

Dynkin Serre Weyl

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

YITP50.dvi


Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

陦ィ邏・2

8.3 ( ) Intrinsic ( ) (1 ) V v i V {e 1,..., e n } V v V v = v 1 e v n e n = v i e i V V V V w i V {f 1,..., f n } V w 1

液晶の物理1:連続体理論(弾性,粘性)

Transcription:

( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson [Mo] T. Mochizuki, Donaldson type invariants for algebraic surfaces. Transition of moduli stacks, Lecture Notes in Mathematics, 1972. Springer-Verlag, Berlin, 2009. xxiv+383 pp [NY] H. Nakajima and K. Yoshioka, Instanton counting on blowup. I. 4-dimensional pure gauge theory, Invent. Math. 162 (2005), no. 2, 313 355 ( :19340006) 2010 Mathematics Subject Classification: Primary 14D21; Secondary 57R57, 81T13, 81T60,,,, 606-8502 e-mail: nakajima@kurims.kyoto-u.ac.jp web: http://www.kurims.kyoto-u.ac.jp/~nakajima

Donaldson Seiberg-Witten [GNY] 1. 1.1. f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seiberg-Witten 1.2. 2 Σ X ( ) 1 KdA = e(σ) = Index p X 2πi Σ p Σ

M T M M T M T α = α p e(t p M) M p M T e(t p M) p M T p M T p M t T ( ) log t M = P 1 T = S 1 [z 0 : z 1 ] [z 0 : tz 1 ] p 0 = [1 : 0], p = [0 : 1] t, t 1 α M L c 1 (L) P 1 C 2 1 L L = { ([z 0 : z 1 ], v 0, v 1 ) P 1 C 2 λ C (v 0, v 1 ) = λ(z 0, z 1 ) }. T L ([z 0 : z 1 ], v 0, v 1 ) ([z 0 : tz 1 ], v 0, tv 1 ) L α p L p t T log t p 0 t 0 = 1, p t (1) P 1 c 1 (L) = 0 1 + 1 1 = 1 1 n t = diag(t 1,..., t n ) log t = diag(ε 1,..., ε n ) (1) α p, e(t p M) ε 1,..., ε n P n [z 0 : z 1 : : z n ] [z 0 : t 1 z 1 : : t n z n ] [1 : 0 : : 0],..., [0 : : 0 : 1] n + 1 c 1 (L) n P n 0 n = + ε 1 ε n ε n 1 ( ε 1 )(ε 2 ε 1 ) (ε n ε 1 ) + + ε n n ( ε n )(ε 2 ε n ) (ε n 1 ε n ) (1)

( 1) n c 1 (L) n c 1 (L) d d n 0 ( 1) n h d n (ε 1,..., ε n ) h d n (ε 1,..., ε n ) ε 1,..., ε n (d n) d < n ( ) 0 d > n 0 0 P n P n 2n Gromov- Witten Donaldson (Ellingsrud- Göttsche ) Nekrasov Donaldson Gromov-Witten 1.3. (1) M M T

M = C 2, T = S 1 S 1 (x, y) (t 1 x, t 2 y) t 1, t 2 α = 1 (1) 1 = 1 C ε 2 1 ε 2 Ĉ2 C 2 0 P 1 ( 1 ) Ĉ2 C 2 Ĉ2 p 2 0 p 1 1: C 2 T p 1 p 2 t 1, t 2 /t 1 t 1 /t 2 t 2 Ĉ 2 1 = 1 ε 1 (ε 2 ε 1 ) + 1 = 1 (ε 1 ε 2 )ε 2 ε 1 ε 2 C 2 1 Ĉ2 1 Ĉ2 C 2 C 2 1 ( [Ĉ2 ] [C 2 ] ) Ĉ2 C 2 C 2 1, Ĉ 2 1 1 1 Nekrasov

1.4. C 2 Nekrasov C 2 C 2 n S n (C 2 ) C 2n n S n C 2n /S n ( ) S n (C 2 ) 1 = 1 n! C 2n 1 T = S 1 S 1 C 2n n (0,..., 0) (ε 1 ε 2 ) n q n n 1 (ε 1 ε 2 ) n n! S n (C 2 ) 1 = exp( q ε 1 ε 2 ) q n S n (C 2 ) = exp(qc 2 ) n exp 1/ε 1 ε 2 C 2 1 C 2 n Hilb n (C 2 ) {I C[x, y] I dim C[x, y]/i = n} C 2 n I Hilb n (C 2 ) Hilb n (C 2 ) I n = 2 p L T p C 2 I = {f C[x, y] f(p) = 0, df L = 0} Hilb 2 (C 2 ) L S n (C 2 ) Hilb n (C 2 )

n π : Hilb n (C 2 ) S n (C 2 ) S n (C 2 ) Hilb n (C 2 ) 1 Hilb n (C 2 ) π Hilb n (C 2 ) S n (C 2 ) 1 = 1 Hilb n (C 2 ) S n (C 2 ) ( ) Hilb n (C 2 ) S n (C 2 ) 1 1 T Hilb n (C 2 ) C2 Hilb n (C 2 ) ( ) xy 2 y 3 y 2 y xy s 1 x x 2 2: Y Hilb n (C 2 ) Hilb n (C 2 ) 1 = Y e(t Y Hilb n (C 2 )) 1 e(t Y Hilb n (C 2 )) ( l Y (s)ε 1 + (a Y (s) + 1)ε 2 )((l Y (s) + 1)ε 1 a Y (s)ε 2 ) (2) s Y

s Y l Y, a Y leg length, arm length 2 1 ( l Y (s)ε 1 + (a Y (s) + 1)ε 2 )((l Y (s) + 1)ε 1 a Y (s)ε 2 ) = 1 (ε 1 ε 2 ) n n! Y s Y (Jack ) 2. Donaldson 2.1. Donaldson ( D ) 1989 4 X ( ) U(2)- A F (A) F A = da + 1 [A A] 2 2 F A = F A Uhlenbeck ξ = c 1 (P ), n = c 2 (P ) n n

1994 Kronheimer Mrowka D ( ) D 4 ( ) Witten Seiberg Seiberg-Witten ( SW ) ( ) Spin c - A ψ D + A ψ = 0, F + A + µ(ψ, ψ) = 0 Spin c A U(1)- µ(ψ, ψ) ψ SW 0 0 4 ( simple type ) SW Witten D SW Witten Seiberg D 4 R 4 R 4 D Seiberg-Witten 2.2. Witten Witten X χ(x) σ(x) (KX) 2 def. = 2χ(X) + 3σ(X), χ h (X) def. = χ(x) + σ(x) 4 X 4

ξ, n M(ξ, n) µ(α) k µ(p) l M(ξ,n) α, p 4 X α H 2 (X) p µ X M(ξ, n) µ(α), µ(p) D z, x, Λ D ξ (exp(αz + px)) def. = µ(α) k µ(p) l zk x l ) 3χ h (X) n,k,l M(ξ,n) k!l! Λ4n (ξ2 X KM-simple type 2 x 2 Dξ = 4Λ 4 D ξ ξ, α D ξ (α) def. = ( 1 D ξ,n (α k ) + 1 ) k! 2 Dξ,n (α k p) n,k D ξ (exp(αz + px)) Witten D ξ (α) = 2 (K2 X ) χ h(x)+2 ( 1) χ h(x) e (α2 )/2 s SW(s)( 1) (ξ,ξ+c 1(s))/2 e (c 1(s),α) (3) (, ) X, (α 2 ) = (α, α) SW(s) c structure s SW c 1 (s) = c 1 (S + ) H 2 (X, Z) s X KM-simple type SW-simple type SW(s) 0 c 1 (s) 2 = (KX 2 ) 2.3. Seiberg-Witten Witten D SW Pidstrigach-Tyurin Feehan-Leness (B.Chen ) Feehan-Leness D ξ (exp(αz + px)) = s f(z, x; χ h (X), (K 2 X), s, ξ, α, s 0 ) SW(s),

f χ h (X), (KX 2 ) s, ξ, α, s 0 z, x U(2) U(2)- U(1)- U(2)- X c s 0 s 0 Witten f(z, x) Feehan-Leness X D SW f(z, x) X Res da (4) a= n 1,n 2 Hilb n 1 (X) Hilb n 2 (X) Nekrasov Feehan-Leness f(z, x) χ h (X), (KX 2 ) s, ξ, α, s 0 4.1 SW(s) f(z, x) unique f(z, x) Feehan-Leness a (= U(2)- )

3. Seiberg-Witten 2002 Nekrasov R 4 D Nekrasov Seiberg-Witten Seiberg-Witten Nekrasov Nekrasov Nekrasov-Okounkov Braverman-Etingof Nekrasov 3.1. Nekrasov M 0 (r, n) R 4 SU(r)- Uhlenbeck( ) n R 4 S 4 E E E = C r Uhlenbeck S 4 R 4 M 0 (r, n) C 2 = R 4 T 2 T r ε 1, ε 2 a 1,..., a r a Nekrasov Z inst (ε 1, ε 2, a, Λ) def. = n Λ 2rn M 0 (r,n) M 0 (r, n) M 0 (r,n) π : M(r, n) M 0 (r, n) 1

M(r,n) M(r, n) C 2 r torsion free sheaf M 0 (r, n) S n (C 2 ) Hilb n (C 2 ) M(r, n) M 0 (r, n) M(r, n) M(r, n) T 2 T r r (Y 1,..., Y r ) n (2) Z inst r (4) M(r, n) T 2 T r T r M(r, n) T r = r M(1, n α ) n α n = n 1 + n r n α M(1, n α ) n α α=1 Z inst (ε 1, ε 2, a, Λ) = Λ n α n α Hilb n 1 (C 2 ) Hilb nr (C 2 ) 1 e(n) N Hilb n 1 (C 2 ) Hilb n r (C 2 ) M(r, n) normal bundle e(n) (4) 1/e(N) a ( r = 2 a a ) 3.2. Seiberg-Witten r 2 T r M 0 (r, n) T r T r 1 a 1 + + a r = 0 r = 2 a = a 2 = a 1 Seiberg-Witten

Nekrasov log Z inst (ε 1, ε 2, a, Λ) ε 1, ε 2 log Z inst (ε 1, ε 2, a, Λ) = 1 ε 1 ε 2 ( F inst ( a, Λ) + O(ε 1, ε 2 ) ) F inst ( ) log Z inst mild Z inst mild F inst Seiberg-Witten F inst u Λ y 2 = (z 2 + u) 2 4Λ 4 = (z 2 + u 2Λ 2 )(z 2 + u + 2Λ 2 ) (5) A, B- a = A ds = 1 π z 2 dz y ds, a D = u Λ da du = 1 dz 2π y 0 u a a D a ( Λ) a D = 2π 1 F a F F Λ ( ) 2 1a 4a 2 log 3a 2 Λ A B ds

Λ F inst u = a 2 1 4 Λ Λ F inst (6) a u Seiberg-Witten 3.3. Seiberg-Witten D Fintushel-Stern 4 X X#P 2 D ( u (6) ) Nekrasov R 4 = C 2 Ĉ2 U(r)- Uhlenbeck( ) M 0 (r, k, n) k = c 1 (E), [C] C 2 n M 0 (r, k, n) M 0 (r, n ) (k = 0 n = n ) M 0 (r, k, n) M 0 (r, n ) 1 = 1 M 0 (r,0,n) M 0 (r,n) Ĉ2 M(r, k, n) torsino free sheaf M 0 (r, k, n) M(r, k, n) M 0 (r, k, n) M 0 (r, k, n) M(r, k, n) M(r, k, n) (Y 1 1,..., Y 1 r ), (Y 2 1,..., Y 2 r ) r k 1,..., k r kα = k, Yα 1 + Yα 2 + 1 (k α k β ) 2 = n 2r α α<β

2r Ĉ2 (Y 1 1,..., Y 1 r ), (Y 2 1,..., Y 2 r ) C 2 M(r, k, n) M(r, n) (k = 0 k ) e(t Y 1 Hilb Y 1 (C 2 )) ε1 ε 1 e(t Y 2 Hilb Y 2 (C 2 )) ε 2 ε 2 ε 1 ε1 ε 1 ε 2 ε 2 ε 2 C 2 C 2 Ĉ2 (1) M 0 (r, k, n) M 0 (r, n ) (2) Z inst Z inst ε 1, ε 2 0 F inst contact term Seiberg-Witten contact term F inst F inst F ( ) 4. Witten [GNY] 4.1. 2.3 D SW ( ) f [EGL]

X f ( Nekrasov ) f(z, x) exp (F (z, x)) F (z, x) ξ, s, s 0, α, p, c 1 (X), c 2 (X) ( ) X 1 q n n Hilb n (C 2 ) 1 = exp(q 1) C 2 α 3, α 4 0 F (z, x) f(z, x) (α 2 ), (ξ, α), (c 1 (X), α), (s, α) X Feehan-Leness f(z, x) χ h (X), (K 2 X ) s, ξ, α, s 0 (1) c 1 (X) 4 (2) log f(z, x) (2) (1) ( ) 4.2. Nekrasov F (z, x) X X Hilb n (X) Hilb n (X) X Hilb n (X) T = ( ) ( ) }{{} n X T

f(z, x) exp F (z, x) F (z, x) = p X T F p (z, x) X T F p (z, x) p ε 1 (p), ε 2 (p) α p, ξ p,... F p (z, x) X = C 2 log ε 1, ε 2 α p ε 1 (p), ε 2 (p), α p X = C 2 exp F p (z, x) Nekrasov r = 2 M 0 (2, n) 1 ASD A Ker D + A V e(v) Z inst (ε 1, ε 2, a, m, Λ) = n Λ 3n M(2,n) e(v) Uhlenbeck M 0 (2, n) M(2, n) V M(2, n) m V S 1 m = a U(2)- Seiberg-Witten 4.3. F p (z, x) Z inst (ε 1, ε 2, a, m, Λ) log Z inst log Z inst = 1 ( ) F inst + (ε 1 + ε 2 )H inst + ε 1 ε 2 A inst + ε2 1 + ε 2 2 B inst + ε 1 ε 2 3

F inst Seiberg-Witten A inst, B inst H inst 0 a = F inst a Seiberg-Witten u ( u ) a u A, B u global a u u a u u = ±2Λ 2 (5) Witten a = Witten (5) Nekrasov e(v) Seiberg-Witten Witten 0 0 c (3) 0 SW Witten 7. 4 SW-simple type X superconformal simple type (KX 2 ) χ h(x) 3

( 1) ( w 2(X), w 2 (X)+c 1 (s))/2 SW(s)(c 1 (s), α) n = 0 (8) s w 2 (X) w 2 (X) 0 n χ h (X) (KX 2 ) 4 [MMP] Seiberg-Witten 4 D SW [MMP] X superconformal simple type D ξ mod 2 ( ) superconformal simple type Witten [EGL] G. Ellingsrud, L. Göttsche, M. Lehn, On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001), 81 100; arxiv:math.ag/9904095. [MMP] M. Marino, G. Moore and G. Peradze, Superconformal invariance and the geography of four-manifolds, Commun.Math.Phys. 205 (1999) 691-735; arxiv:hep-th/9812055.