Similar documents
A

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

error_g1.eps


p12.dvi

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

第10章 アイソパラメトリック要素

p1_5.pmd

: 1g99p038-8

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =


K E N Z OU

TOP URL 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

研修コーナー

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

tnbp59-21_Web:P2/ky132379509610002944


パーキンソン病治療ガイドライン2002

日本内科学会雑誌第97巻第7号

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

sec13.dvi


日本内科学会雑誌第98巻第4号

phs.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

3/4/8:9 { } { } β β β α β α β β

平塚信用金庫の現況 2015

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

( ) ( )

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P


d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

FX ) 2

FX自己アフリエイトマニュアル

ver Web

untitled

201711grade1ouyou.pdf

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

KENZOU


snkp-14-2/ky347084220200019175

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

untitled

renshumondai-kaito.dvi


資料5:聖ウルスラ学院英智小・中学校 提出資料(1)

II Time-stamp: <05/09/30 17:14:06 waki> ii

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


I

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

加速度センサを用いた図形入力

中央大学セミナー.ppt

Microsoft Word - 01マニュアル・入稿原稿p1-112.doc

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

December 28, 2018

A 99% MS-Free Presentation

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

gr09.dvi

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

Numerical Analysis II, Exam End Term Spring 2017

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

卓球の試合への興味度に関する確率論的分析

量子力学 問題

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

JSP58-program


grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

I

北斗20号-12.14

Transcription:

17 1 25

http://grape.astron.s.u-tokyo.ac.jp/pub/people/makino/kougi/stellar_dynamics/index.html http://grape.astron.s.u-tokyo.ac.jp/pub/people/makino/talks/index-j.html

d 2 x i dt 2 = j i Gm j x j x i x j x i 3, (1) 2 10

2 O(N 2 ) N

( )

k 1 = x i + h 2 f(x i, t i ) x i+1 = x i + hf(k 1, t i + h/2) (2) y step 2 y i step 1 h x i x x i+1 2 ( 2 )

x n+1 k i = x n + h s i=1 = f(x n + h s b i k i j=1 a ij k j, t n + c i h) (3) s : number of stages a ij, b i, c i a c c i = s j=1 a ij (4)

2 s = 2 x n+1 = x n + h(k 1 b 1 + k 2 b 2 ) k 1 = f(x n + h(a 11 k 1 + a 12 k 2 ), t n + c 1 h) k 2 = f(x n + h(a 21 k 1 + a 22 k 2 ), t n + c 2 h) (5) a ij (j i) 0 k 1 a ij (j > i) 0 k i k i (semi-implicit) k 1 k 2

k i

Runge-Kutta x n+1 = x n + h(k 1 /6 + k 2 /3 + k 3 /3 + k 4 /6) k 1 = f(x n, t n ) k 2 k 3 = f(x n + hk 1 /2, t n + h/2) = f(x n + hk 2 /2, t n + h/2) k 4 = f(x n + hk 3, t n + h) (6)

Runge-Kutta 1. a ij i j = 1 0 2. 4 4 3. 4

s 1 2 3 4 5 6 7 8 9 10 s 10 p 1 2 3 4 4 5 6 6 7 7 p s 2 2 2

1. 2. 3. 0 Dormand Prince http://www.unige.ch/math/folks/hairer/software.html (Fotran C )

: : (variable step) / (adaptive step) h =

RK x n+1 = x n + s i=1 b i k i (7) k i b i b i x = x n + s i=1 b i k i (8) x embedded Runge-Kutta-Fehlberg Dormand-Prince

( ) s 2s 8 2s

: t i x i t i+1 x i+1 : t i

: f f i-3 i-2 i-1 i i+1 t

i i + 1 i p i p P (t j ) = f j = f(x j, t j ) (i p j i) (9) i + 1 x i+1 x i+1 = x i + t i+1 t i P (t)dt (10) h p x i+1 = x i + h p l=0 a pj f i l (11)

2 p = 1 P (t) = f i f i 1 f i (t t i ) (12) h x i+1 = x i + h 2 (3f i f i 1 ) (13)

t i+1 h p x i+1 = x i + h p 1 l= 1 b pj f i l (14) p = 1 x i+1 = x i + h 2 (f i + f i+1 ) (15)

- - (PEC) - (PE) P(EC) 2 PE(CE) 2

t 0 x 0 : : :

: :

2

( )

2 2 : 2

: : ( )

: ρ r α σ r (2 α)/2 (16) : 1/ Gρ r α/2

2 0 2 : : 0

: : O(N) 2 : O(N 1/3 )

( ) 2

t i t i 1. t i + t i 1 2. 2 3. 4. 1 i t i ti : t i + t i n Time

PEC

t = η a 1 a (2) 1 + ȧ 1 2 ȧ 1 a (3) 1 + a (2) (17) 1 2

:

3 :? /

: 2 leap frog leapfrog Verlet 2nd order ABM 2nd order Stömer-Cowell 4

leap frog v i+1/2 = v i 1/2 + ta(x i ) (18) x i+1 = x i + tv i+1/2 (19) ±1/2 v 1/2 = v + ta(x 0 )/2 (20) v i = v i 1/2 + ta(x i )/2 (21)

x i+1 = x i + tv i + t 2 a(x i )/2 (22) v i+1 = v i + t[a(x i ) + a(x i+1 )]/2 (23) PC v i+1/2 = v i + ta(x i )/2 (24) x i+1 = x i + tv i+1/2 (25) v i+1 = v i+1/2 + ta(x i+1 )/2 (26) x i 1, x i, x i+1

leap frog 2 :

d 2 x = x (27) dt2 2 (x, v) = (1, 0) 1/4

H = 1 2 (x2 + v 2 ) h2 4 x2 (28) h 2 ( 1 )

d 2 x dt = 2 x3 (29) 2 (x, v) = (1, 0) 1/8

1. 2.

1. 2. 3.

1. 2.

? : :

: 7 6 15 8 T (p) + V (q)

Ruth 4 S 4 (h) = L(d 1 h)l(d 2 h)l(d 1 h), d 1 = 1/(2 2 1/3 ), d 2 = 1 2d 1 = 2 1/3 /(2 2 1/3 ) (30) : L(h) h 1

4 h t t i i+1 2 1/3 2 ( ) ( )

6 6 9 8 27 6 : d 1 = d 7 = 0.784513610477560 d 2 = d 6 = 0.235573213359357 d 3 = d 5 = 1.17767998417887 d 4 = 1.31518632068391 (31)

? H p H H H H = H + h p+1 H p + O(h p+2 ) (32) H ( ) ( )

( ) H H = H 1 + H 2 + (33)

1 : ( ) :8 15 2 Dormand 9 8 8 10 4 100

MVS + ( ) : H = T (p) + V (q) (34) p p p t H q (35) q

: H = T (p) + V 1 (q) + V 2 (q) (36) V 1 V 2 H 1 = T (p) + V 1 (q) (37) V 2 p p t V 2 (38) q 2

: x x + tv MVS: V 1 KS

( ) dy dx = f(x, y) (39) y i+1 = F (x i, y i, f, x) (40) y i = F (x i+1, y i+1, f, x) (41) 1

y i+1 = y i + h 2 (f i + f i+1 ) (42)

:

RK

= 2 : α 0 x i+p + α p x i = h 2 (β 0 f i+p + β p f i ) (43) β 0 = 0 α i = α p i, β i = β p i (44) x i+1 2x i + x i 1 = h 2 f i (45)

(x i,...x i+p 1 ) x i+p (x i+p,...x i+1 ) x i

1970 1990 Quinlan Tremaine 14 Quinlan & Tremaine

: 6 6

: 4 x 1 = x 0 + t 2 (v 1 + v 0 ) t2 12 (a 1 a 0 ), (46) v 1 = v 0 + t 2 (a 1 + a 0 ) t2 12 (ȧ 1 ȧ 0 ). (47) ( )

( )

e = 0.9

t 0 t 0 t 1 t 1 t = 2 1[h(ξ 0) + h(ξ 1 )] (48) h(ξ) ξ 1 t

Cano Sanz-Serna (a), (b) (c) 1