eto-vol2.prepri.dvi

Similar documents
eto-vol1.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

III,..

量子力学 問題

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

IA



I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

30

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

TOP URL 1

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

all.dvi

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

Gmech08.dvi

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

Part () () Γ Part ,

高知工科大学電子 光システム工学科

all.dvi

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

Aharonov-Bohm 1

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

B ver B

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

QMI_10.dvi

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc


DVIOUT-fujin


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

08-Note2-web

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

液晶の物理1:連続体理論(弾性,粘性)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

TOP URL 1

Gmech08.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

arxiv: v1(astro-ph.co)

( )


m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

量子力学A

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

i

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

i

0 4/

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

QMII_10.dvi

dynamics-solution2.dvi

QMI_09.dvi

QMI_10.dvi

構造と連続体の力学基礎

TOP URL 1

meiji_resume_1.PDF

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

LLG-R8.Nisus.pdf

2000年度『数学展望 I』講義録

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

70 : 20 : A B (20 ) (30 ) 50 1

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Transcription:

( 2) 3.4 5 (b),(c) [ 5 (a)] [ 5 (b)] [ 5 (c)] (extrinsic) skew scattering side jump [] [2, 3] (intrinsic) 2 Sinova 2 heavy-hole light-hole ( [4, 5, 6] ) Sinova Sinova 3. () 3 3 Ṽ = V (r)+ σ [p V (r)] λ h = V (r)+v (r)l s (5) V (r) ( ) 2.3 (3) : λ = P 2 [ ] 3 (E 0 +Δ 0 ) 2 E 2 0

(a) E B + + + + e (b) (c) E 5: (a) (b) (c) (a) (b), (c) λ = h 2 /(4m 2 0 c2 )(m 0, c ) V (r) = λ 2 r V (r) r λ >0 V (r) V (r) (Rashba Dresselhaus ) [ ] h2 2m Δ+Ṽ ψ = Eψ, (6) dv dr E = h2 k 2 2m, (m Δ 3 ) l s l 2, s 2 l l [2, 3, 7] (V =0) z l e ikz = e ikr cos θ = (2l +)i l j l (kr)p l (cos θ) (7) l=0 (Rayleigh ). Legendre P l (cos θ) l ( z l z =0) eikr cos θ ϕ l z 0 j l (kr) Bessel V (r) l l (6) R l (r) [ d 2 dr 2 + 2 d l(l +) r dr r 2 2m ] h 2 V (r)+k2 R l (r) =0 2

R l (r) r R l (r) eiδ l kr sin(kr lπ/2+δ l) δ l δ l [j l (kr) sin(kr lπ/2)/(kr)] 2 : V δ l <π/2 V <0( ) δ l > 0( ) V > 0( ) δ l < 0( ) (θ, ϕ) l f(θ, ϕ) = (2l +) e2iδ l P l (cos θ). 2ik l=0 V =0 ϕ σ(θ, ϕ) = f(θ, ϕ) 2, σ tot = = 4π k 2 σ(θ, ϕ) sin θdθdϕ (2l + ) sin 2 δ l l=0 l δ l =0, δ l = ±π/2 l 2l s =(l + s) 2 l 2 s 2 (s 2 =4/3) j = l + s l z, s z (5) l s P l (cos θ) l s = 2 (l +s + l s + )+l z s z (l ± = l x ± il y, s ± = s x ± is y l z, s z ) l =0(S ) l l sp l (cos θ) = 2 [ s e iϕ + s + e iϕ ]Pl (cos θ) (8) = i( sin ϕs x + cos ϕs y )Pl (cos θ). (9) (8) l ± (l, l z =0) (l, l z = ±) Pl (cos θ)e±iϕ (Pl Legendre ) j z = l z + s z (s z =/2) (s z = /2) z e iϕ e iϕ n = ẑ =(0, 0, ) n = (sin θ cos ϕ, sin θ sin ϕ, cos θ) ν = n n n n =( sin ϕ, cos ϕ, 0) (9) iν spl (cos θ). 2 l 3

A (7) f(θ, ϕ) = A +2Bν s, (20) A = 2ik [(l + )(e2iδ+ l ) + l(e 2iδ l )]P l (cos θ), B = l=0 l= 2k (e2iδ+ l e 2iδ l )P l (cos θ). δ l ± l j = l ± /2 : 2 V (r)+(/2)v (r)[j(j +) l(l +) 3/4] ( A) V (r) V (r) j = l +/2 j = l /2 S δ 0 + = δ 0 δ 0. n ν P = A + B 2 A B 2 A + B 2 + A B 2 ν = 2Re(AB ) A 2 + B 2 ν (2) Re(AB ) > 0 z x y x y GaAs [8] Engel [] Si-doped GaAs ( n =3 0 6 cm 3 ) V (r) = e2 4πεr e qsr /q s 9nm. Boltzmann a ka : δ l (ka) 2l+ l [7] k F =(3π 2 n) /3 0.096nm k F /q s 3.2 (2) 2 2 (xy ) 3 r, θ 2 z Ṽ = V (r)+v (r)l z s z. (22) s z =/2 l z > 0 l z < 0 s z = /2 l z = m (m =0, ±, ±2, ) ( B m m ) xy x e ikx = e ikr cos θ = i m J m (kr)e imθ, (23) m= 4

(a) 2DEG 2DEG (b) a r a r V 0 V 0 (c) 2 2 ~m / r r 6: (a) ( ) 2 (2DEG) (b) 2 V 0 < 0 (c) A m 2 /r 2 J m (kr) Bessel s z = ±/2 m R m ± (r) ( B) r R ± m (r) 2 πkr eiδ± m cos(kr mπ/2 π/4+δ ± m ) (24) δ ± m [ J m(kr) 2/(πkr) cos(kr mπ/2 π/4)] δ ± m = δ m, S (m =0) δ + 0 = δ 0 δ 0. s z = ±/2 f ± (θ) = A ± B, (25) A = i + 2πk (e2iδ 0 ) + m= i [ ] (e 2iδ+ m ) + (e 2iδ m ) cos mθ, 2πk B = (e 2iδ+ m e 2iδ m ) sin mθ, 2πk m= θ z P z = f + 2 f 2 f + 2 + f 2 = 2Re(AB ) A 2 + B 2 (26) 5

+ sin 2 δ m + δ 2 δ 2 + δ 0 δ δ Pz (θ= π/2) 0 0.6 0 0.2 5 9 k' / k = + V 0 /E 7: A(V 0 < 0, ka =0.5, λ/a 2 =0.0) S (m =0) P (m = ±) D (m = ±2) sin 2 δ ± m. k /k = + V 0 /E ( B ) θ = π/2 P z 3 6 (a) 2 6 (b) 2 (A) (B) V (r) =V 0 θ(a r), V (r) =V 0 [ (r/a) 2 ]θ(a r). a>0, θ(a r) [θ(x) =(x>0), 0 (x <0)] s z = ±/2 m (A) V 0 [θ(a r) ± m(λ/a)δ(r a)], (B) V 0 [ (r/a) 2 ± 2mλ/a 2] θ(a r). (B) (B ) V 0 [ ± 2mλ/a 2] θ(a r) A, B δ m ± ( B) (V 0 < 0) A m sin 2 δ m ± 7 ka =0.5 ( a, 2π/k 0 00nm ), λ/a 2 =0.0 ( 3 [9] 6

(a) E (b) ky k x ky B eff Δk kx kx 8: (a) InGaAs/GaAs (2 ) (b) Sinova k Δk ) 4 V 0 S P (m = ±) D (m = ±2) ( 6 (c))[7] S m 2 /r 2 P D m 7 (26) y (θ = π/2) P z (θ = π/2 D ) P ( λ/a 2 =0.00 0% ) B B 3.3 3. 3.2? Bloch ψ n,k (r) =u n,k (r)e ik r, n k u n,k (r) k 2 [0, 4] 2 4 [] GaAs λ =5.3Å 2 λ/a 2 0 4. InGaAs Rashba α λ V 0 /a 0meV nm, V 0 0meV λ/a 2 0 2. 7

3.3. Sinova 2 ( InGaAs ) Hamiltonian H = p2 2m + ᾱ σ (p ẑ). (27) h ψ k,±(r) = e ik r χ k,±, (28) E k,± = h2 k 2 h2 αk = 2m 2m (k k α) 2 h2 kα 2 2m, (29) χ k,± k ẑ : σ k ẑ = k ẑ σ k ẑ, σ k ẑχ k,± = ±χ k,±. χ k,+ 8 (a) k =(k x,k y ).4 Hamiltonian (27) 2 Zeeman γ hb eff =2α(k ẑ) k E x k : h k = i[k,h ( e)e x x]= ee x ˆx (30) hδk =( e)e x ˆxΔt ( ) B eff (k +Δk) B eff (k) : h ds dt = s B(t), B(t) = γ hb eff (t) [ 8 (b)] z ( k ) [0] s z = h d B 2 B 2 dt. B ΔB eff (t) B eff (k) ( k ) y 5 d B dt s z = =2α(ẑ k) k k = 2α( e)e x k y h k h 2α( e)e x k y 2(2αk) 2 h k = ( e)k y 4αk 3 E x, dk j s,y = (2π) 2 hsz(k) hk y m = ( e) h2 6παm (k F,+ k F, )E x 5 y v y = hky [y, H ( e)exx] = + ασx 2 i h m 8

(a) E k (b) HH LH ky ky Δk k z kx kz kx 9: (a) GaAs 3 Γ heavy-hole (HH) (λ = ±3/2) heavy-hole (LH) (λ = ±/2) λ =3/2, /2 S k x -k y (b) ( ) k Δk λ S k F,± 2 k F,+ k F, =2k α =2mα/ h 2 σ sh = j s,y = e E x 8π universal Sinova jspin z = h 2 {s z, v} [0] [] Chalaev [2] vertex σ sh! σ sh [3] 3.3.2 GaAs (3 ).2 (Γ ) j =3/2 j =/2 2 j =3/2 Γ j z = ±3/2 heavy-hole j z = ±/2 light-hole 2 heavy-hole light-hole Luttinger Hamiltonian Spherical [( H = h2 γ + 5 ) ] 2m 2 γ 2 k 2 2γ 2 (k S) 2, (3) S 3/2 6 γ, γ 2 Hamiltonian 6 p (l =) s =/2 k 9

(3) S k λ = S k/k (helicity ) λ = ±3/2 (heavy-hole ) λ = ±/2 E H (k) = h2 2m (γ 2γ 2 )k 2 E L (k) = h2 2m (γ +2γ 2 )k 2 h2 2m H k 2 h2 2m L k 2 (light-hole ) 9 (a) S k 8 (a) E x h k = ee x ˆx 9 (b) heavy-hole λ =3/2 λ heavy-hole light-hole k [4] Hamiltonian (3) U(k) =e iθsy e iϕsz S k S z (θ, ϕ k ) 7 ee x x H = U(k)(H ee x x)u (k) ( γ + 5 2 γ 2 2γ 2 Sz 2 = h2 k 2 2m ) [ ee x x + iu(k) ] U (k). k x k S ( ) S z 8 y k z ẏ = hk y λ ē m eff h k 3 E x. (32) (m eff m H m L ) λ =3/2, /2 λ = 3/2, /2 σ sh = j s,y = e E x 2π (3kH F kl F ), k H,L F heavy-hole, light-hole (3 Sinova 2 σ sh ) Wunderlich [5] 7 S k z ϕ y θ z 8 (32) i hẏ =[y, H] S z (32) r k [4, 5, 6, 4] 0

Sinova vertex [6] [4, 5, 6] A 3. (5) l (l ) l P l (cos θ)χ ± (χ ± σ z ) j = l + s (j, j z ) P l (cos θ)χ ± j = l ± /2 2 P l (cos θ)χ + Clebsch-Gordan 4π ( P l (cos θ)χ + = l +ψl+/2,/2 ) lψ 2l + l /2,/2, ψ j=l±/2,jz=/2 z (5) V (r)+ [ 2 V (r) j(j +) l(l +) 3 ] Ṽ l,± (r). 4 ψ l±/2,/2 Ṽl,±(r) δ ± l P l (cos θ)χ + f l,+ f l,+ = ( l e 2iδ+ l 4π + ψ 2ik l+/2,/2 ) l e2iδ l ψ 2ik l /2,/2. (33) Clebsch-Gordan ψ l±/2,/2 (l, l z =0;s z =/2) (l, l z =;s z = /2) ψ l+/2,/2 = ψ l /2,/2 = (33) [ l +Pl (cos θ)χ + ] Pl (cos θ)e iϕ χ, 4π l + [ lp l (cos θ)χ + ] Pl (cos θ)e iϕ χ. 4π l f l,+ = 2ik [(l + )(e2iδ+ l ) + l(e 2iδ l )]P l (cos θ)χ + 2ik (e2iδ+ l e 2iδ l )P l (cos θ)e iϕ χ (34) P l (cos θ)χ f l, (34) f l,± = 2ik [(l + )(e2iδ+ l ) + l(e 2iδ l )]P l (cos θ)χ ± 2ik (e2iδ+ l e 2iδ l )P l (cos θ)e iϕ χ. (35) l f l,± (20)

B 2 xy x (23) ( s z = ±/2 ± ) r ψ e ikx + f(θ) ei(kr+π/4) r 9 (?) σ(θ) = f(θ) 2 3 (23) m S S m =+i 2πkf m = e 2iδm [f m f(θ) : f(θ) = m f me imθ ] ψ f(θ) = m= m= 2 πkr im e iδm cos(kr mπ/2 π/4+δ m )e imθ, e 2iδm i 2πk eimθ. (36) σ tot = 2π 0 = 2 πk σ tot = σ(θ)dθ m= sin 2 δ m, 2 πk Imf(0) 2 (3 ) Aharonov-Bohm [7] (22) s z = ±/2 δ m ± m R± m (r) [ d 2 dr 2 + ] d r dr m2 r 2 2m h 2 Ṽ m ± (r)+k2 R m ± (r) =0, Ṽ ± m (r) =V (r) ± mv (r)/2. E = h 2 k 2 /(2m ). R m ± = R m, δ m ± = δ m (36) (25) A δ m ± = δ m m 0 r >a Ṽ =0 R m ± (r) = C J m (kr)+c 2 Y m (kr) (37) 2 πkr [C cos(kr mπ/2 π/4) + C 2 sin(kr mπ/2 π/4)], (38) 9 2 π/4 ( σ(θ) ) 2

Y m (kr) (38) R m ± (r) (24) r <a (37), (40) r = a V 0 < 0 tan δ ± m = C 2/C. (39) R m(r) ± = C 3 J m (k r), (40) h 2 k 2 /(2m ) = E V 0. (4) tan δ m ± = [J m (ka) J m+ (ka)]j m (k a) α ± m J m(ka) [Y m (ka) Y m+ (ka)]j m (k a) α ± my m (ka), α ± m = (k /k)[j m (k a) J m+ (k a)] 2m[ + (k /k) 2 ](kλ/a)j m (k a), (Y m ) B d dx J m(x) = 2 [J m (x) J m+ (x)] h 2 k 2 /(2m ) = E V 0 ( ± 2mλ/a 2 ), α ± m = (k /k)[j m (k a) J m+ (k a)] B r<a (39) δ m ± [] H. Engel, B. I. Halperin and E. I. Rashba: Phys. Rev. Lett. 95 (2005) 66605. [2] : 2 ( 3 983), 40, p. 696. [3] : ( 3 975), X. [4] : 39 (2004) 27. [5] : 62 (2007) 2. [6] : 4 (2006) 877; 42 (2007), 487, 873; 43 (2008) 73. [7] J. J. Sakurai: ( 989), 7. [8] Y. K. Kato, R. C. Myers, A. C. Gossard and D. D. Awschalom: Science 306 (2004) 90. [9] : ( 2003). [0] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth and A. H. MacDonald: Phys. Rev. Lett. 92 (2004) 26603. [] J. Inoue, G. E. W. Bauer, L. W. Molenkamp: Phys. Rev. B 70 (2004) 04303(R). 3

[2] O. Chalaev and D. Loss: Phys. Rev. B 7 (2005) 24538. [3] I. Adagideli and G. E. W. Bauer: Phys. Rev. Lett. 95 (2005) 256602. [4] S. Murakami, N. Nagaosa and S. C. Zhang: Science 30 (2003) 348. [5] J. Wunderlich, B. Kaestner, J. Sinova and T. Jungwirth: Phys. Rev. Lett. 94 (2005) 47204. [6] S. Murakami: Phys. Rev. B 69 (2004) 24202(R). [7] Y. Aharonov and D. Bohm: Phys. Rev. 5 (959) 485. 4