p12.dvi

Similar documents
d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

error_g1.eps

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2


CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

programmingII2019-v01

pdf

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


Report98.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

meiji_resume_1.PDF

Note.tex 2008/09/19( )

: 1g99p038-8


ver.1 / c /(13)

構造と連続体の力学基礎

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d


~nabe/lecture/index.html 2

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

数値計算:常微分方程式

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

A

all.dvi

TOP URL 1

OHP.dvi


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

プリント

K E N Z OU

note1.dvi

I 1

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

v_-3_+2_1.eps

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.



II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

koji07-01.dvi

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

高知工科大学電子 光システム工学科

December 28, 2018

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

slide1.dvi

DE-resume

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

基礎数学I

量子力学 問題

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

Lecture note 10: II Osaka Institute of Technology

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

II 1 II 2012 II Gauss-Bonnet II

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

Untitled

untitled

Xray.dvi

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

B ver B

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

( )

untitled

(time series) ( 225 ) / / p.2/66

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t

福岡大学人文論叢47-3

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

総研大恒星進化概要.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

III Kepler ( )

2

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

OHP.dvi

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

Fr

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

Numerical Analysis II, Exam End Term Spring 2017

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

第10章 アイソパラメトリック要素

II III II 1 III ( ) [2] [3] [1] 1 1:


untitled

Transcription:

301 12 (2) : 1

(1) dx dt = f(x,t) ( (t 0,t 1,...,t N ) ) h k = t k+1 t k. h k k h. x(t k ) x k. : 2

(2) :1. step. 1 : explicit( ) : ξ k+1 = ξ k +h k Ψ(t k,ξ k,h k ) implicit( ) : ξ k+1 = ξ k +h k Ψ(t k,t k+1,ξ k,ξ k+1,h k ) : 3

(3), Euler Ψ Runge-Kutta ( explicit ),.., x(t) dx dt = f(x,t). : 4

Runge-Kutta (1) Runge-Kutta 1., Φ(t k,x k,h k ), x k+1 = x k +h k Φ(t k,x k,h k ). Φ(t k,x k,h k ), Ψ(t,x(t),h k ). Ψ(t,x(t),h k ) Φ(t,x(t),h k ), τ(t,r). : 5

Runge-Kutta (2) C > 0, ρ > 0, r : 0 < r < ρ, t [a,b], τ(t,r) Cr p, p, p., x(t+r) x(t) x(t) x(t r),. : 6

Runge-Kutta (3) (h ), p, L > 0, k, x k ξ k el(b a) L Chp ([ ], pp. 225 226). : 7

Runge-Kutta (4) Runge-Kutta, f(x,t) Ψ p (p 1).. Heun Runge-Kutta. : 8

Runge-Kutta (5) Ψ f s, s (s-stage) Runge-Kutta ([ ]) s Runge-Kutta, p. : 9

Runge-Kutta (6) s p ([ ]), s = p., (, ). ξ k+1 = ξ k +h k Ψ(t k,ξ k,h k ) Ψ p. : 10

Runge-Kutta (7) 2 Runge-Kutta 2 Runge-Kutta, k 1 = f(ξ k,t k ), k 2 = f(ξ k +h k βk 1,t k +αh k ),Ψ(t k,ξ k ) = c 1 k 1 +c 2 k 2. α, β,c 1, c 2 2. : 11

Runge-Kutta (8) 2 explicit Runge-Kutta, α > 0, β = α, c 1 = 1 1, c 2α 2 = 1 2α, 2., 2 2 explicit Runge-Kutta, ([ ], pp. 227 229).. : 12

Runge-Kutta (9) 2 Runge-Kutta α β c 1 c 2 Heun 1 1 1 Euler 1 2 2 1 2 1 2 0 1 : 13

Runge-Kutta (10) Runge-Kutta, f Taylor,.,. Runge-Kutta,., Runge-Kutta,,,. : 14

Runge-Kutta (11) 4 Runge-Kutta 4 Runge-Kutta, k j = f(ξ k +h k l<j β jlk l,t k +α j h k ) ( j = 1,...,4, l<j β jl = α j ),Ψ(t k,ξ k ) = 4 j=1 c 4 jk j ( j=1 c j = 1). (j = 1 l<j ). : 15

Runge-Kutta (12) Runge 1/6 α 1 α 2 α 3 α 4 c 1 c 2 c 3 c 4 0 1 2 1 1 1 2 6 1 3 β 21 = 1 2,β 32 = 1 2,β 43 = 1, RK4, RK41, Runge-Kutta,. 1 3 1 6 : 16

Runge-Kutta (13) Kutta 1/8 α 1 α 2 α 3 α 4 c 1 c 2 c 3 c 4 0 1 3 2 1 1 3 8 3 8 β 21 = 1 3,β 31 = 1 3,β 32 = 1 β 41 = 1,β 42 = 1,β 43 = 1 3 8 1 8 :

Runge-Kutta (14), Runge-Kutta. s Ψ(t k,ξ k ) = c j k j, s j=1 c j = 1 j=1. k j. j = 1,...,s. : 18

Runge-Kutta (15) Explicit( ) : l<j β jl = α j, k j = f(ξ k +h k β jl k l,t k +α j h k ), l<j Implicit( ) : s l=1 β jl = α j, s k j = f(ξ k +h k β jl k l,t k +α j h k ) l=1 : 19

Runge-Kutta (16) Euler 1 Runge-Kutta. s Runge-Kutta, s α 1,...,α s, s c 1,...,c s s 2 (β il )., α j = s l=1 β jl. :

Runge-Kutta (17) Runge-Kutta, Butcher.,. α 1 β 11 β 12 β 1s α 2 β 21 β 22 β 2s.... α s β s1 β s2 β ss c 1 c 2 c s : 21

Runge-Kutta (18) explicit Butcher,. s = p = 2, s = p = 3, s = p = 4, Runge-Kutta ( Butcher ) ([Butcher]). : 22

Runge-Kutta (19) s = p = 2 explicit. s = p = 3, s = p = 4,, ([Butcher] )., Butcher ([ ]). : 23

1 (s = p = 1) [ ] Euler 0 0 1 Euler 1 1 1 2 (s = p = 2) [ ] Heun Euler Crank Nicolson 0 0 0 0 0 0 0 0 0 1 1 0 1 2 1 2 1 2 1 2 0 0 1 1 1 2 1 2 1 2 1 2 : 24

3 (s = p = 3) [ ] Heun Kutta 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 4 4 2 2 2 8 1 1 2 0 3 2 9 0 9 1 0 3 4 4 1 6 2 3 1 6 : 25

4 (s = p = 4) [ ], [Hairer] Vol. 1 Runge 1/6 Kutta 1/8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 2 2 1 0 1 3 3 2 0 0 1 1 0 0 2 2 3 3 1 0 0 1 0 1 1 1 1 0 1 6 1 3 1 3 1 6 1 8 3 8 3 8 1 8 : 26

Runge-Kutta (23) B = (β jl ) 1 j s,1 l s Butcher, α = (α 1,...,α s ) T, c = (c 1,...,c s ), Butcher (B,α,c). : 27

Runge-Kutta (24) explicit Runge-Kutta, p 5 p p, p 7 p+1 p, p 8 p+2 p ([Hairer et al], Vol. 1). s. : 28

Runge-Kutta (25) 5 6, 6 7, 8 11, 10 17 ([Hairer et al], Vol. 1).,. : 29

(1),., Butcher (B,α,c) p+1,butcher (B,α,c) p,. : 30

(2) (p,p+1), Butcher., s p+1 p ([ ]). : 31

(3) Runge-Kutta Runge-Kutta ([ ]).,. (B,α,c) Runge-Kutta (ξ k ),(B,α,c) Runge- Kutta (ξ k ). : 32

(4), ξ k ξ k, (,, ).. : 33

(5),, ( ). [ ]. Scilab RKF45 Runge-Kutta, 6 5 4. : 34

implicit Runge-Kutta, implicit Runge-Kutta ( ) differential-algebraic equation.,,. implicit Runge-Kutta [Hairer et el.] [Butcher]. : 35

d dt x = Ax, A,. A λ m, λ M. Reλ M / Reλ m... : 36

(1), ξ k+1, ξ k, (ξ k L,...,ξ k ) ( ). Runge Kutta,,, (ξ k L,...,ξ k ). : 37

(2), ξ k+l (ξ k,...,ξ k+l 1 )., h ( [Hairer et al.], Vol. 1 ). : 38

(3) Runge Kutta, f(ξ k,t k ),..., f(ξ k+l,t k+l ) ( : L ) ξ k+l = ξ k +h l=0 β(0) l f(ξ k+l,t k+l ) β (0) l (0 l L). ξ k : 39

(4) ξ k+l ξ k = h ( L ) l=0 β(0) l f(ξ k+l,t k+l ) {ξ k+l } 0 l L, ( ). ( L L ) α l ξ k+l = h β l f(ξ k+l,t k+l ) l=0 l=0 : 40

(5) {α l } 0 l L, {β l } 0 l L,., ξ k+l implicit( ), ξ k+l explicit( ). 1. : 41

(6) ( ), ([ ]),. L l=0 α lξ k+l = hψ ( t k,...,t k+l,ξ k,...,ξ k+l ;h ),,. : 42

(7) L, ξ 0,..., ξ L 1 (1 ). ( ) {α l } 0 l L {β l } 0 l L.,., ([ ]): (1) α 0 +α 1 z + +α L z L 1, 1, (2) L l=0 α l = 0, (3) l l=0 lα l L l=0 β l = 0. : 43

, explicit, implicit,., explicit, implicit. explicit implicit. : 44

Adams (1) dx = f(x,t), x(t dt k+l 1 ) = x k+l 1. x k+l x k+l 1 = t k+l t k+l 1 f(ϕ(τ,t k,x k ),τ)dτ, ϕ(τ,t k,x k ). : 45

Adams (2), ϕ(τ,t k,x k ) τ 1, Lagrange. (t k,x k ),...,(t k+l 1,x k+l 1 ), x k+l x k+l 1 L 1 l=0 β lf(x k+l,t l ),(t k,x k ),...,(t k+l,x k+l ),x k+l x k+l 1 L l=0 β lf(x k+l,t l ). : 46

Adams (3) x j ξ j (k j k +L),., Adams. (ξ k+l,t k+l ) Adams Bashforth, Adams Moulton. : 47

Adams (4) Adams Bashforth explicit, Adams Moulton implicit. {β l } 0 l L, Lagrange. L,,. : 48

Adams (5) t t k+1, L=2 Adams Bashforth. t k f(ξ k,t k ), t k+1 f(ξ k+1,t k +1) Lagrange, f(ξ t k t k,t k ) + t t k f(ξ k+1 t k+1 t k+1,t k+1 ) k tk+2, t k+1 t k = h, = t k t k+1 1 2h (t t k+1) 2 t k+2 = h tk+2 t k+1 2, t t k = 1 t k+1 t k+1 t k 2h (t t k) 2 t k+2 = 3h t k+1 2., L=2 Adams Bashforth, ( ξ k+2 ξ k+1 = h 1 2 f(ξ k,t k )+ 3 ) 2 f(ξ k+1,t k+1 ). t k+1 t t k+1 : 49

BDF (1) BDF Backward Difference Formula. implicit. BDF ([ ]). ξ k+l (ξ k,...,ξ k+l 1 ). : 50

BDF (2) ξ k+l, (t k,ξ k ), (t k+1,ξ k+1 ),..., (t k+l,ξ k+l ) L Lagrange. p(t).,t k+l 1 = t k+l h, t k+l 2 = t k+l 2h,.... : 51

BDF (3) p(t) ξ k+l.,p(t) t = t k+l dx = f(x,t) dt. : 52

BDF (4) d dt p(t) = f(ξ k+l,t) ξ k+l t=tk+l BDF. Lagrange, t = t k+l, ( ). : 53

BDF (5) L BDF L = 1 : ξ k +ξ k+1 = hf(ξ k+1,t k+1 ) 1 L = 2 : ξ 2 k 2ξ k+1 + 3ξ 2 k+2 = hf(ξ k+2,t k+2 ) L = 3 : 1ξ 3 k + 3ξ 2 k+1 3ξ k+2 + 11ξ 6 k+3 = hf(ξ k+3,t k+3 ) BDF L > 6. : 54

Scilab (1) ( ) ( )( d x 1 0 1 = dt 1 0 x 2 x 1 x 2 ), ( ) ( ) x 1 (0) 1 = x 2 (0) 0. x 1 (t) = cost, x 2 (t) = sint., BDF,. : 55

// ( ) function dx=f(t,x) dx=[0-1;1 0]*x; endfunction t0=0; //. t=0:.1:100; x0=[1;0]; : 56

ode. y=ode(x0,t0,t,f); // y=ode("adams",x0,t0,t,f); //Adams y=ode("stiff",x0,t0,t,f); //BDF y=ode("rk",x0,t0,t,f); //Runge-Kutta y=ode("rkf",x0,t0,t,f); //RKF45 Adams BDF : 57

( y(t)(2 1001 ) Frobenius ). 5.33 10 5 0.031 Adams 5.78 10 5 0.111 BDF 7.61 10 4 0.062 Runge-Kutta 9.10 10 9 0.811 RKF45 1.66 10 5 0.062 : 58

Scilab (5) [ ]. ( ) ( )( ) ( ) d dt x 1 x 2 = 2 1 1998 1999 x 1 x 2 + cost 1999cost sint x 1 (0) = 1, x 2 (0) = 2. x 1 (t) = e t, x 2 (t) = e t +cost ( Mathematica )., : 59

// ( ) function dx=f(t,x) dx=[-2 1;1998-1999]*x+.. [-cos(t);1999*cos(t)-sin(t)]; endfunction // :.. t0=0; t=0:.5:100; x0=[1;2]; : 60

. y=ode(x0,t0,t,f); // y=ode("adams",x0,t0,t,f); //Adams y=ode("stiff",x0,t0,t,f); //BDF y=ode("rk",x0,t0,t,f); //Runge-Kutta y=ode("rkf",x0,t0,t,f); //RKF45 : 61

( y(t)(2 1001 ) Frobenius ). 3.3 10 7 0.031 Adams 2.1 10 6 0.484 BDF 4.9 10 7 0.109 Runge-Kutta 7.5 10 1 29.547 RKF45 8.9 10 4 2.028 : 62