量子暗号

Similar documents
pla85900.tsp.eps

IntroductionToQuantumComputer

II

QMI13a.dvi

量子情報科学−情報科学の物理限界への挑戦- 2018

Microsoft PowerPoint - qcomp.ppt [互換モード]

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

QMI_10.dvi

2 ( ) i

IA

[3] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

Xray.dvi

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N


I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

ssp2_fixed.dvi

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

QuantumComp

untitled

第5章 偏微分方程式の境界値問題

The 18th Game Programming Workshop ,a) 1,b) 1,c) 2,d) 1,e) 1,f) Adapting One-Player Mahjong Players to Four-Player Mahjong

untitled

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member


1 ELC Web 2 検証と求解 パズルはなぜ面白い SUDOKU 図 図 -1 数独の問題図と解答図 ( より ) 6 2 P!NP 2 1 情報処理 Vol.54 No.4 Apr

soturon.dvi

note4.dvi

Gmech08.dvi

4/15 No.

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

h23w1.dvi

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

II

k = The Last Samurai Tom Cruise [1] Oracle Ken Watanabe (I) has a Bacon number of 2. 1: 6(k 6) (small world p

Intro

QMI_10.dvi

QMI_09.dvi

早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec


Microsoft Excelを用いた分子軌道の描画の実習

27 1 NP NP-completeness of Picross 3D without segment-information and that with height of one

[I486S] 暗号プロトコル理論

Microsoft PowerPoint - IntroAlgDs-05-4.ppt

02-量子力学の復習

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

修士論文.dvi

I

kokyuroku.dvi

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

数学の基礎訓練I

D 1 l θ lsinθ y L D 2 2: D 1 y l sin θ (1.2) θ y (1.1) D 1 (1.2) (θ, y) π 0 π l sin θdθ π [0, π] 3 sin cos π l sin θdθ = l π 0 0 π Ldθ = L Ldθ sin θdθ

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a

013858,繊維学会誌ファイバー1月/報文-02-古金谷

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

スケーリング理論とはなにか? - --尺度を変えて見えること--

重力方向に基づくコントローラの向き決定方法

4 i

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

lecture1.dvi

橡kenkyuhoukoku8.PDF

Schrödinger I



Microsoft PowerPoint - IntroAlgDs-05-5.ppt

Literacy 2 Mathematica Mathematica 3 Hiroshi Toyoizumi Univ. of Aizu REFERENCES [1] C.P Williams [2] [3] 1 Literacy 2 Mathematica Ma

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

BH BH BH BH Typeset by FoilTEX 2


Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

GM-F520S/GM-F470S/GM-F420S

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

+ 量子操作と量子測定がひらく量子情報処理 一般物理分野 (A5 サブコース ) 村尾美緒

Nosé Hoover 1.2 ( 1) (a) (b) 1:

2

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i


1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

Chap10.dvi

Microsoft Word - 学士論文(表紙).doc

Transcription:

量子計算モデル 参考資料 今井浩 東京大学情報理工学系研究科コンピュータ科学専攻 JST ERATO-SORST 量子情報システムアーキテクチャ

情報を処理する観点から

どうして量子計算 通信を研究するのか? 量子計算によって 古典計算 通信では現実的に解けない問題を 実際に解く 今のコンピュータの高速化に量子力学が障害 その量子力学を肯定的に使って 今解けないものを解けるようにする 古典計算 確率計算の発展としての量子計算 新計算モデルの開拓ー限界の打破 今のコンピュータ 情報処理方式への還元

Birch and Swinnerton-Dyer Conjecture Hodge Conjecture Navier-Stokes Equations P vs NP Poincaré Conjecture Riemann Hypothesis Yang-Mills Theory

計算 ( 情報処理 ; 通信含む ) とは何か 情報を まず何らかのルールで与え ( 入力 ) 何らかの物理状態で表現し ( 符号化 ) 所望の状態になるように操作し ( 計算 ) 所望の結果を得る ( 出力 ) そして通信では その物理状態を伝送する ( 符号化 復号化 )

1930 年代 計算モデル Turing Machine Recursive Function Theory λ Calculus 1980 年中ごろ : 計算は対話だ! C. H. Papadimitiriou: Games against Nature. J. Computer & System Sciences, 1985. 現代 : Nature is computing R. M. Karp (Turing 賞 (1985), 京都賞 (2008))

Nondeterministic Polynomial (NP) Two players: prover, verifier Prover tries to convince verifier of her assertion by just given one certificate Verifier must check validity of prover s assertion efficiently: efficiently in time polynomial to input length Peggy (Prover) Oracle x = 1, y = 0, z = 1 にして! ( x y z) ( x y z) ( x y z) は Victor (Verifier) NP satisfiable?

Computation Theory undecidable decidable intractable= exponential time tractable= polynomial time cn 2 2 2 cn 2 2 EXP PSPACE NP-complete exp( O((logn)1/3(loglogn)2/3)) n: input size P n 3.5 Llog n log log n n 1.193 n log n n Halting problem of Turing Machine Presburger arithmetic traveling salesman graph isomorphism integer factoring linear programming n n matrix multiplication sorting, FFT median

量子計算が現代計算を凌駕する点!? Deutch-Jozsa algorithm Exponential gap, but for a partial function Shor s quantum polynomial factoring Classically, only subexponential factoring Polynomial Las Vegas algorithm for primality testing does not provide a rigorous proof Grover s search algorithm Practically important, but theoretical non-exponential そして多数 : 隠れ部分群問題 量子ウォーク / 探索

量子力学の観点から

1927 Solvay Conference on Quantum Mechanics http://commons.wikimedia.org/wiki/image:solvay_conference_1927.jpg より A. Piccard, E. Henriot, P. Ehrenfest, Ed. Herzen, Th. De Donder, E. Schrödinger, E. Verschaffelt, W. Pauli, W. Heisenberg, R.H. Fowler, L. Brillouin, P. Debye, M. Knudsen, W.L. Bragg, H.A. Kramers, P.A.M. Dirac, A.H. Compton, L. de Broglie, M. Born, N. Bohr, I. Langmuir, M. Planck, M. Curie, H.A. Lorentz, A. Einstein, P. Langevin, Ch. E. Guye, C.T.R. Wilson, O.W. Richardson

EPR and Bohr

Bell-CHSH correlation experiment two measurements apply one two measurements apply one A 1 entangled quantum state B 1 A 2 Alice Bob B 2 Classical correlation: P A1 ) P( B1 ) + P( A1 B1 ) + P( A1 B2 ) + P( A2 B1 ) P( A2 B ) ( 2 Quantum correlation: P( A ) P( B1 ) + P( A1 B1 ) + P( A1 B2 ) + P( A2 B1 ) P( A2 B2 ) 1 0 1 2

量子非局所性 量子対話証明 量子計算量理論

Interactive Proof System [Babai 1985; Goldwasser, Micali, and Rackoff 1985] Two players: prover, verifier Prover tries to convince verifier of her assertion with unbounded computational power Verifier must check validity of prover s assertion probabilistically and efficiently: probabilistically with bounded error efficiently in time polynomial to input length IP=PSPACE Peggy (Prover) Interactive Communication Victor (Verifier)

Nondeterministic Polynomial (NP) Two players: prover, verifier Prover tries to convince verifier of her assertion by just given one certificate Verifier must check validity of prover s assertion efficiently: efficiently in time polynomial to input length Peggy (Prover) Oracle x = 1, y = 0, z = 1 にして! ( x y z) ( x y z) ( x y z) は Victor (Verifier) NP satisfiable?

Example: Graph Non-Isomorphism INPUT: Graph Non-Isomorphism Problem (GNI) Two graphs G 1, G 2 of n vertices QUESTION: For all permutation π S n on vertices, π (G 1 ) G 2? Protocol of verifier V: 1. Choose an index i {1,2} of graphs and a permutation π S n at random. Send a graph π (G i ) to prover P to ask which of the two is isomorphic to π (G i ). 2. Receive an index j from P. Accept iff i = j.

1 2 同型 1 4 4 3 3 2 1 4 非同型 2 3 4 2 3 1

Multi-prover Interactive Proof Alice MIP=NEXPTIME X Bob Victor (Verifier)

NEXP EXP NEXP=MIP=QMIP EXP QIP 量子計算量クラス IP=IP poly =AM poly PSPACE BQPSPACE=PrQPSPACE=(N)PSPACE=IP PrQP = PP AQMA QMA NQP=co-C = P NP BQP BPP RQMA MA=AM 1 EQMA NP(=EMA) co-np AM=AM 2 =AM 2 =IP 2 RP co-rp ZPP P P

EPR paradox and Bell inequalities Einstein, Podolsky, Rosen (1935) quantum entanglement vs. relativity theory Bell inequality (1964) Entanglement/Nonlocalit violation entanglement measure instantly (local) faster than light state change CHSH inequality (Clauser, Horne, Shimony, Holt 1969) applicable to a bipartite system Aspect et al. (1982) Experimental verification of violation of CHSH inequality Tsirelson (1980): max. violation value Semidefinite Programming (Avis, Imai, Ito 2006)

A Two-Party One-Round Interactive Proof System [Cleve, Høyer, Toner, Watrous CCC 2004] Alice Provers 事前に回答戦略を協力して練ってよい 質問が始まったら通信できない V( a, b; s, t) = 1 0 < 1 Provers win Provers lose 答 a {01, } 答 b {01, } Bob 質問 t {01, } 質問 s {01, } Victor (Verifier)

A Two-Party One-Round Interactive Proof System [Cleve, Høyer, Toner, Watrous CCC 2004] Alice Provers 事前に回答戦略を協力して練ってよい 関数 a: S A, b: T Bを確定 質問が始まったら通信できないゲームの値 V( a, b; s, t) = 1 0 < 1 答 a A ={ 01,,, A 1} Provers win Provers lose 答 b B ={ 01,,, B 1} Bob 質問 s S ={ 01,,, S 1} 質問 t T ={ 01,,, T 1} Victor (Verifier)

Alice CHSH Game V( a, b; s, t) = 1 0 a b= s t otherwise ゲームの値 : 等確率質問に対して証明者が勝つ確率の最大値 a( 0) = 0, a(1) = 1; b(0) = 1, b(1) = 0 ゲームの値 3/4 答 a {01, } 答 b {01, } Bob 質問 s {01, } 質問 t {01, } Victor (Verifier)

CHSH Game の解析 古典の場合 : ゲームの値 3/4 量子の場合 : φ φ 事前にAliceとBobがエンタングル状態 ( 00 + 11)/ 2 を共有 それぞれ自分のところで部分測定できる X a = φ (0) (0) ( θ) = cosθ 0 + sinθ 1 0 a φa 0 として X a = φ ( /4) ( /4) ( θ) = sinθ 0 + cosθ 1 1 a π φa π 1 Yb = φ ( π /8) φ ( π /8) 0 b b Yb = φ ( π /8) φ ( π /8) 1 b b ゲームの値 cos 2( π /8) 0.85 > 0. 75 で測定 結果を回答 まさしく CHSH 不等式として知られる Bell 不等式の話そのもの 他に Kochen-Specker 定理 擬似テレパシー, 量子グラフ彩色など種々の展開