Similar documents

Ni PLD GdBa 2 Cu 3 O 7 x 2 6

MgB 2 Mg B


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

TOP URL 1

The Physics of Atmospheres CAPTER :

( ) ,

Note.tex 2008/09/19( )

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 章末問題

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n


量子力学 問題


S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40,

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

30

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

i 18 2H 2 + O 2 2H 2 + ( ) 3K

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

Chap11.dvi

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

201711grade1ouyou.pdf

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

物理化学I-第12回(13).ppt

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

meiji_resume_1.PDF

keisoku01.dvi


1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

i


m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

05Mar2001_tune.dvi

基礎数学I

高校生の就職への数学II

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

1 I

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

pdf

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

untitled

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

36 th IChO : - 3 ( ) , G O O D L U C K final 1

all.dvi

LLG-R8.Nisus.pdf

limit&derivative

Untitled


H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

chap9.dvi

QMII_10.dvi

Part () () Γ Part ,

(1) (2) (3) (4) 1

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

main.dvi

I ( ) 2019

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

SO(2)

³ÎΨÏÀ

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

TOP URL 1

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

Mott散乱によるParity対称性の破れを検証

II 2 II

untitled

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Z: Q: R: C:

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

untitled

1章

Transcription:

BaHfO 3 PLD GdBa 2 Cu 3 O 7 δ 24 2 17

1 1 1.1.................................. 1 1.2............................... 2 1.3............................. 2 1.4................................. 3 1.5......................... 4 1.5.1............................ 4 1.5.2.............................. 7 1.5.3......................... 8 1.5.4.................... 10 1.5.5..................... 11 1.6 REBaCuO............................ 12 1.7.................................. 13 1.8................................. 13 1.8.1 IBAD...................... 13 1.9................................ 14 1.9.1 PLD....................... 14 1.9.2 MOD....................... 14 1.10................................ 14 2 16 2.1..................................... 16 2.1.1........................... 16 2.1.2............................... 16 2.1.3............................... 17 i

2.2.................................. 18 2.2.1 SQUID................. 18 2.2.2 SQUID................. 19 3 22 3.1 J c -B....................... 22 3.2 J c -B.................................. 23 3.3.................. 24 3.4 F p -B................................. 25 4 26 4.1................ 26 4.2 BHO BZO....................... 28 5 29 6 31 32 ii

2.1.................................. 17 4.1................ 26 iii

1.1 B c2........... 3 1.2................ 4 1.3...................... 7 1.4 L d...... 10 2.1.................... 17 2.2 dx............................. 19 2.3 ( ) ( )......................... 20 2.4 c..................... 21 3.1 77.3 K J c -B................ 22 3.2 77.3 K J c -B.................... 23 3.3 20 K J c -B..................... 23 3.4 20 K U 0................. 24 3.5 77.3 K F p -B................... 25 3.6 20 K F p -B.................... 25 4.1 P1 20 K E J............... 27 4.2 H1 20 K E J............... 27 4.3 Z1 20 K E J............... 27 iv

1 1.1 1908 Leiden Kamerlingh-Onnes 1911 4.2 K 1957 Bardeen Cooper Schriffer BCS ( T c ) 30 K Johames G.Bednorz Karl Alex Müller (La-Ba-Cu-O) 30 K (77 K) Y-Ba-Cu-O Bi-Sr-Ca-Cu-O T c (Meissner ) Meissner B c T c B c1 Meissner B c2 B c2 1

1.2 B c2 B c Lorentz F L F L J B F L = J B F L v E = B v F L F p JB = J B JB F p J c J c = F p /B T c B c2 J c 1.3 NbTi Nb 3 Sn T c 10 20 K T c (CuO 2 ) c ab c ab J c 2

1.4 1.1 Lorentz B c2 1.1 B c2 J c 0 J c = 0 J c 0 B i 1.1 J c 0 1.1 B c2 3

1.2 1.5 1.5.1 [1] 1.2 Lorentz Lorentz ( A C) B U U 4

T k B T (k B Boltzmann ) U Arrhenius exp( U/k B T ) a f a f a f a f ν 0 Lorentz v + ( v + = a f ν 0 exp U ) k B T nu 0 (1.1) ν 0 = ζρ fj c0 2πa f B (1.2) ζ ζ 2π a f ζ = 4 ρ f J c0 Lorentz v ( v = a f ν 0 [exp U ) exp ( U )] k B T k B T (1.3) U Lorentz E = B v ( E = Ba f ν 0 [exp U ) exp ( U )] k B T k B T (1.4) E J c0 ) m ( J c0 = A (1 TTc B γ 1 1 B ) 2 (1.5) B c2 A m γ x 1.2 5

F (x) = U 0 2 sin(kx) fx (1.6) f V Lorentz f = JBV U 0 /2 k = 2π/a f x = x 0 x = x 0 0 F (x) = 0 x 0 = a ( ) f faf 2π cos 1 U 0 π U U = F (x 0 ) F ( x 0 ) [ ( )] U = U 0 sin cos 1 faf U 0 π { ( ) } 1 2 2 = U 0 2f 1 U 0 k fa f π (1.7) ( ) faf cos 1 U 0 π ) (1.8) 2f ( 2f U 0 k cos 1 U 0 k sin(cos 1 x) = 1 x 2 U = 0 2f/U 0 k = 2J c0 BV/U 0 k = 1 J = J c0 2f U 0 k = J J c0 j (1.9) j (1.8) k = 2π/a f (1.9) U(j) = U 0 [(1 j 2 ) 1 2 j cos 1 j] (1.10) U (j) U + fa f = U + πu 0 j (1.11) (1.4) ( E = Ba f ν 0 exp U(j) ) [ ( 1 exp πu )] 0j k B T k B T (1.12) 6

1.3 1.5.2 Lorentz 1.2 Lorentz 1.3 Lorentz J B Lorentz Lorentz δ = v/ v J B δf p0 = 0 (1.13) F p0 J c0 J = F p0 /B = J c0 J > J c0 7

(1.13) J B δf p0 B ϕ 0 ηv = 0 (1.14) ϕ 0 η (1.14) J c0 = F p /B E = B v J J = J c0 + E ρ f (1.15) ρ f = Bϕ 0 /η (1.15) E E = ρ f (J J c0 ) (1.16) 1.5.3 U 0 Û0 V U 0 = Û0V (1.17) Û0 Labusch α L d i Û 0 = 1 2 α Ld 2 i (1.18) F p F p = J c0 B = α L d i (1.19) d i ζ a f d i = a f ζ (1.20) (1.18) 1.28) U 0 = 1 2ζ J c0ba f V (1.21) 8

[2] (1.21) U 0 a f ϕ 0 a f = (2ϕ 0 / 3B) 1/2 R L R L (1.21) U 0 1.4 R a f R = ga f (1.22) g 2 J c g 2 = g 2 e [ 5kB T 2U e ( Baf ν 0 log E c )] 4 3 (1.23) [3] g 2 e g2 U e g 2 = g 2 e U 0 g 2 e g 2 e = C 0 66 C 0 66 = B c 2 B 4µB c2 C 0 66 2πJ c0 Ba f (1.24) ( 1 B B c2 2 [3] B c L L = ( C44 α L ) 1 2 = ( Baf ζµ 0 J c0 ) ) 1 2 (1.25) (1.26) C 44 = B 2 /µ 0 L d L < d L > d 9

L > d 3 1.4 L V V = R 2 L U 0 U 0 = 0.835g2 k B J 1/2 c0 (1.27) ζ 3/2 B 1/4 L > d 2 d V = R 2 d U 0 U 0 = 4.23g2 k B J c0 d ζb 1/2 (1.28) (1/2)(2/ 3) 7/4 (ϕ 7 0/µ 2 0) 1/4 0.835k B (1/2)(2/ 3) 3/2 ϕ 3/2 0 4.23k B U 0 k B T 1.5.4 1.5.1 1.5.2 E cp E ff j 1 ( E cr = Ba f ν 0 exp U(j) ) [ ( 1 exp πu )] 0j k B T k B T (1.29) E ff = 0 (1.30) 1.4 L d 10

j > 1 ( E cr = Ba f ν 0 [1 exp πu )] 0 k B T (1.31) E ff = ρ f (J J c0 ) (1.32) E E = (E 2 cr + E 2 ff) 1/2 (1.33) (1.5) A f(a) = K exp [ (log A log A m) 2 ] 2σ 2 (1.34) K σ 2 A m A A E(J) = 0 E f(a)da (1.35) (1.35) E-J 1.5.5 (0 x 2d) z (0 x d) x y J B = µ 0 (H e Jx) (1.36) x = 0 Maxwell B E = d B t = µ 0d 2 2 J t 11 (1.37)

(1.4) U U J U U (1.4) 2 U J U = U 0 sj U 0 J 0 s = U 0 /J c0 U = U 0 ( 1 J ) J c0 (1.38) [ J t = 2Ba fν 0 µ 0 d 2 exp U 0 k B T ( 1 J J c0 t = 0 J = J c0 J = 1 k ( BT 2Baf ν 0 U ) 0 t J c0 U0 log µ 0 d 2 J c0 k B T + 1 1 d ( ) J = k BT d(logt) J c0 U0 )] (1.39) (1.40) (1.41) U0 U0 U 0 U 0 [4] [5] U0 1.6 REBaCuO 1 REBaCuO(REBCO) (RE: ) J c RE Gd GdBCO GdBa 2 Cu 3 O 7 δ (δ ) GdBCO 12

REBCO (RE: ) J c c F p [6] 1.7 c REBCO Y 2 BaCuO 3 Y 2 O 3 BaZrO 3 (BZO) BaSnO 3 (BSO) PLD(Pulsed Laser Deposition) c J c MOD(Metal Organic Deposition) 1.9.1 1.9.2 (ISTEC-SRL) Hf( ) BaHfO 3 PLD GdBCO 1.8 1.8.1 IBAD IBAD(Ion Beam Assisted Deposition) [7] REBCO Ar + 13

IBAD MgO 2 CeO 2 IBAD 1.9 1.9.1 PLD PLD(Pulsed Laser Deposition) GdBCO PLD PLD MOD c J c 1.9.2 MOD MOD(Metal Organic Deposition) (TFA) MOD PLD c J c 1.10 GdBCO J c Superconducting Magnetic Energy Storage/ (SMES) ( 10 T) B ab J c BZO BSO 14

J c T c J c BHO GdBCO SQUID J c ( BZO ) 15

2 2.1 (ISTEC- SRL) GdBa 2 Cu 3 O 7 δ (GdBCO) 2.1.1 Hastelloy IBAD(Ion Beam Assisted Deposition) MgO PLD(Pulsed Laser Deposition) CeO 2 PLD GdBCO Ag Ag/GdBa 2 Cu 3 O 7 δ /PLD-CeO 2 /IBAD-MgO/Hastelloy 2.1 2.1.2 SQUID(Superconducting Quantum Interference Device) 4 2 mm 16

2.1 2.1.3 2.1 BHO BZO 1.0[µm] 2.5[µm] G 2.2.2 2.1 Process Thickness d[µm] T c [K] G P1 GdBCO 1.1 90.7 1.00 10 3 H1 GdBCO+BHO(3.5mol%) 1.0 90.5 7.75 10 4 Z1 GdBCO+BZO(3.5mol%) 1.1 89.2 8.56 10 4 P2 GdBCO 2.6 91.4 2.03 10 3 H2 GdBCO+BHO(3.5mol%) 2.5 89.7 1.99 10 3 Z2 GdBCO+BZO(3.5mol%) 2.4 89.8 2.37 10 3 17

2.2 2.2.1 SQUID c 0 T 7 T 7 T 0 T 0 T M[emu] (J c -B) l w (l > w) x y z Bean 2.2 dx di c z dz di c = J c dxdz dx S S x ( S = 4x x + l w ) 2 = 4x 2 + 2x(l w) (2.1) dm = SdI c m = dm = S(x)J c dxdz = J c d S(x)dx (2.2) d m = J cw 2 (3l w)d (2.3) 12 18

2.2 dx 2.3 M m (2.3) m = J cw 2 (3l w)d (2.4) 12 m M = J cw (3l w) (2.5) 12l J c = 6l M (2.6) w(3l w) SQUID [emu] SI M[A/m] = M[emu] 10 3 (2.7) 2.2.2 SQUID 19

B y l w x 2.3 ( ) ( ) Maxwell E-J 1.0 10 8 V/m J (2.3) J = 12m w 2 d(3l w) (2.8) 2.4 Φ Φ = wlb e + µ 0m d (2.9) Faraday d w l E 1 E = 2(l + w) dφ dt (2.10) 20

B 0 Be 2.4 c E G (2.9) (2.10) E E = µ 0G 2d(l + w) dm dt (2.11) G d l L 1 = (µ 0 l/2) log(8l/d) d, l L 2 = πµ 0 l 2 /4d G = L 1 /L 2 (2.8), (2.11) SQUID E-J 21

3 3.1 J c -B J c [A/m 2 ] 10 10 T=77.3 K GdBCO GdBCO+BHO GdBCO+BZO d 1.0 µm d 2.5 µm P1 H1 Z1 P2 H2 Z2 10 9 0 0.2 0.4 0.6 0.8 1 B [T] 3.1 77.3 K J c -B 3.1 77.3 K J c -B 0 T BHO J c J c BHO BZO J c 0.3 T BHO BZO J c BHO, 22

J c 1.5.3 d J c BZO 3.2 3T J c J c Z2 3.2 J c -B 20, 77.3 K J c -B 3.2, 3.3 77.3 K J c -B BHO J c 2 T BZO 2 J c BZO J c BHO J c H2 J c = 1.0 10 8 A/m 2 5.1 T 20 K J c -B BHO J c 20 K BHO BZO J c BHO J c BZO J c [A/m 2 ] 10 10 T=77.3 K GdBCO GdBCO+BHO GdBCO+BZO P1 H1 Z1 d 1.0 µm d 2.5 µm P2 H2 Z2 J c [A/m 2 ] 10 11 T=20 K d 1.0 µm d 2.5 µm GdBCO GdBCO+BHO GdBCO+BZO #1 #2 #3 #4 #5 #6 10 9 10 8 0 1 2 3 4 5 6 B [T] 10 10 0 1 2 3 4 5 6 7 B [T] 3.2 77.3 K J c -B 3.3 20 K J c -B 23

J c 1.5 J c J c 1.5.1 77.3 K 20 K 2 2 J c J c 3.3 SMES U0 SMES 20 K 1 6 T (1.41) U0 3.4 3.4 BHO U0 U 0 4 T BHO U 0 BHO 4 T U 0 BZO 2 T BHO H2 U 0 H1 0.1 GdBCO GdBCO+BHO GdBCO+BZO d 1.0 µm d 2.5µm P1 H1 Z1 P2 H2 Z2 U 0 * [ev] 0.08 0.06 T = 20K 0 1 2 3 4 5 6 7 B [T] 3.4 20 K U 0 24

H1 H2 BHO 3.2 J c SMES 3.4 F p -B 20 K, 77.3 K F p -B 3.5 77.3 K F p -B BHO BZO 4 GN/m 3 3.6 20 K F p -B 20 K BHO F p H1 280 GN/m 3 BHO BZO F p [GN/m 3 ] 4 T=77.3 K GdBCO GdBCO+BHO GdBCO+BZO d 1.0 µm d 2.5 µm #1 #2 #3 #4 #5 #6 F p [GN/m 3 ] 300 200 T=20 K 2 100 0 0 1 2 3 4 5 6 B [T] GdBCO GdBCO+BHO GdBCO+BZO d 1.0 µm #1 #2 #3 #4 #5 #6 d 2.5 µm 0 0 1 2 3 4 5 6 7 B [T] 3.5 77.3 K F p -B 3.6 20 K F p -B 25

4 4.1 3.1 BZO A m σ 2 γ g 2 (2.8) (2.11) 20 K E-J 20 K m 2.0 4.1 4.1 4.3 4.1 A m σ 2 γ g 2 P1 2.58 10 11 8.4 10 3 2.40 10 1 1.0 H1 6.85 10 11 7.0 10 3 5.64 10 1 1.0 Z1 4.69 10 11 7.0 10 3 3.45 10 1 1.0 A m H1 σ 2 H1, Z1 P1 P1 26

E [V/m] 10 8 10 9 6T 1T 2T 3T 4T 5T 6T P1 E [V/m] 10 8 10 9 1T 2T 3T 4T 5T 6T H1 10 10 10 10 10 11 T=20 K GdBCO 10 10 10 11 J [A/m 2 ] 10 11 T=20 K GdBCO+BHO 10 10 J [A/m 2 ] 10 11 4.1 P1 20 K E J 4.2 H1 20 K E J E [V/m] 10 8 10 9 1T 2T 3T 4T 5T 6T Z1 10 10 10 11 4.3 T=20 K GdBCO+BZO 10 10 J [A/m 2 ] 10 11 Z1 20 K E J 27

γ H1 H1 g 2 4.2 BHO BZO 3.4 BHO BZO BHO BZO 3.5 mol% c GdBCO BHO T c 0.2 K BZO 1.3 K 0 T BZO J c BHO J c J c T c TEM(Transmission Electron Microscope) c GdBCO BHO 5.9%, BZO 6.5% T c BHO BZO J c T c 1.7 T J c [8] [9] J c BHO BZO BHO BZO 28

5 BHO BHO BZO GdBCO J c -B 77.3 K BHO J c H2 J c H1 H1 H2 J c 0 T J c BHO BZO J c 20 K J c -B BHO J c BHO 2 J c J c 20 K U0 -B BHO 4 T U0 BHO 20 K J c -B SMES F p -B 77.3, 20 K BHO BZO 20 K E-J BHO A m, γ BHO BZO 29

BHO BZO BZO 30

6 ISTEC-SRL 31

[1] K. Yamafuji, T. Fujiyoshi, K. Toko and T.Matsushita: Physica C 159 (1989) 743 [2] (1998) [3] T. Matsushita, Physica C 217 (1993) 461 [4] (2009) [5] (2009) [6] M. Miura, at al.: Applied Physics Express 2 (2009) 023002 [7] RE123, 115, p.46-54, (2008) [8] T. Matsushita, M. Kiuchi, T. Haraguchi, T. Imada, K. Okamura, S. Okayasu, S. Uchida, J. Shimoyama, K. Kishio, Supercond. Sci. T echnol., 19, 200 205 (2006). [9] M. Namba, S. Awaji, K. Watanabe, T. Nojima, S. Okayasu, P hysica C, 468, 1652 1655 (2008). 32