Size: px
Start display at page:

Download ""

Transcription

1 BaHfO 3 PLD GdBa 2 Cu 3 O x

2 REBa 2 Cu 3 O 7 δ Ginzburg-Lanau B c Pippard B c IBAD PLD i

3 TEM J c -B B c2 -T B c B c B c B c BHO BHO BZO ii

4 2.1 ISTEC-SRL B c2 -T K BHO BZO iii

5 L d (a) (b) (b) C MgB 2 J c -B B c2 J c [8] B c IBAD [12] dx c M-T B c2 -T GdBCO TEM [13] (i-iii) (a-c) c TEM (a)#2 (BHO) (b)#3 (BZO) K #1 #3 J c -B (a)0 6 T (b)0 0.5 T (a)77.3 K #2, #4, #5 J c -B BHO (b) J c (0 T) 77.3 K #2, #4, #5 J c -B iv

6 K #3, #6 J c -B BZO K #2, #3, #7, #8 J c -B #1 #3 B c2 -T #2, #4, #5 B c2 -T BHO #3, #6 B c2 -T BZO #1 #3 B c2 -T #4 #6 B c2 -T π ˆN p D B c2 BHO, BZO g 2 g #2 E-J #1 #3 J c -B #4 #6 J c -B #2 J s0 (B) A s B γ 1 K = 0.94, B = 1.7 T B #3 J s0 (B) A s B γ 1 K = 0.72, B = 1.0 T B #4 J s0 (B) A s B γ 1 K = 0.39, B = 1.5 T B #5 J s0 (B) A s B γ 1 K = 0.25, B = 2.4 T B #6 J s0 (B) A s B γ 1 K = 0.78, B = 1.4 T B K T c BHO, BZO #1, #2, #6 J c -B B c2 #2, #6 BHO, BZO 5mol 44 v

7 4.15 #1, #2, #6 F p -B B c2 #2, #6 BHO, BZO 5mol #1, #2, #5 J c -B K = 0.94 #5 BHO 5mol-improved #1, #2, #5 F p -B K = 0.94 #5 BHO 5mol-improved vi

8 Leiden Kamerlingh Onnes K 1957 Bardeen, Cooper, Schrieffer BCS T c 30 K Johames G. Bednorz Karl Alex Müller T c 30 K (LaBaCuO) 77 K T c YBa 2 Cu 3 O x Bi 2 Sr 2 CaCu 2 O 8 T c T c Meissner Meissner B c T c B c1 Meissner B c2 1

9 B c B c2 B c1 B c2 Lorentz F L F L J B F L = J B F L v E = B v F L F p JB = J B JB F p J c J c = F p /B T c B c2 J c NbTi Nb 3 Sn T c K T c (CuO 2 ) c ab 2 ab c J c c J c J c c F p c J c 2

10 [1] 1.1 Lorentz Lorentz B D U U A T k B T k B Boltzmann U Arrhenius 1.1 3

11 exp( U/k B T ) a f a f a f ν 0 Lorentz v + ( v + = a f ν 0 exp U ) k B T (1.1) Lorentz v v = a f ν 0 [exp ( U ) exp ( U )] k B T k B T (1.2) E = B v ( E = Ba f ν 0 [exp U ) exp ( U )] k B T k B T (1.3) E ν 0 ν 0 = ζρ fj c0 2πa f B (1.4) ζ ζ 2π a f ζ = 4 ρ f J c0 J c0 ) m ( J c0 = A (1 TTc B γ 1 1 B ) 2 (1.5) B c2 A m γ x 1.1 F (x) = U 0 2 sin(kx) fx (1.6) f V Lorentz f = JBV U 0 /2 k = 2π/a f x = x 0 x = x 0 4

12 0 F (x) = 0 x 0 = a ( ) f faf 2π cos 1 U 0 π (1.7) U U = F (x 0 ) F ( x 0 ) [ ( )] U = U 0 sin cos 1 faf fa ( ) f faf U 0 π π cos 1 U 0 π { ( ) } = U 0 2f 1 2f ( ) 2f U 0 k U 0 k cos 1 (1.8) U 0 k sin(cos 1 x) = 1 x 2 U = 0 2f/U 0 k = 2J c0 BV/U 0 k = 1 J = J c0 2f U 0 k = J J c0 j (1.9) j (1.8) k = 2π/a f (1.9) U(j) = U 0 [(1 j 2 ) 1 2 j cos 1 j] (1.10) U (j) U + fa f = U + πu 0 j (1.11) (1.3) ( E = Ba f ν 0 exp U(j) ) [ ( 1 exp πu )] 0j k B T k B T (1.12) Lorentz 1.2 Lorentz 5

13 Lorentz J B Lorentz Lorentz δ = v/ v J B δf p0 = 0 (1.13) F p0 J c0 J = F p0 /B = J c0 J > J c0 (1.13) J B δf p0 B ηv = 0 (1.14) ϕ 0 ϕ 0 η (1.14) J c0 = F p /B E = B v J J = J c0 + E (1.15) ρ f ρ f = Bϕ 0 /η (1.15) E E = ρ f (J J c0 ) (1.16) 1.2 6

14 1.2.3 U 0 Û0 V U 0 = Û0V (1.17) Û0 Labusch α L d i Û 0 = 1 2 α Ld 2 i (1.18) F p F p = J c0 B = α L d i (1.19) d i ζ a f d i = a f ζ (1.20) (1.18) 1.28) U 0 = 1 2ζ J c0ba f V (1.21) [2] (1.21) U 0 a f ϕ 0 a f = (2ϕ 0 / 3B) 1/2 R L R L (1.21) U R a f R = ga f (1.22) 7

15 g 2 J c g 2 = g 2 e [ 5kB T 2U e ( Baf ν 0 log E c )] 4 3 (1.23) [3] g 2 e g2 U e g 2 = g 2 e U 0 g 2 e g 2 e = C πJ c0 Ba f (1.24) C 0 66 C66 0 = B c 2 ( B 1 B ) 4µB 2 c2 B c2 (1.25) [3] B c L L = ( C44 α L ) 1 2 = ( Baf ζµ 0 J c0 ) 1 2 (1.26) C 44 = B 2 /µ 0 L d L < d L > d L > d L d 8

16 1.3 L V V = R 2 L U 0 U 0 = 0.835g2 k B J 1/2 c0 (1.27) ζ 3/2 B 1/4 L > d 2 d V = R 2 d U 0 U 0 = 4.23g2 k B J c0 d ζb 1/2 (1.28) (1/2)(2/ 3) 7/4 (ϕ 7 0/µ 2 0) 1/ k B (1/2)(2/ 3) 3/2 ϕ 3/ k B U 0 k B T E cp E ff j 1 ( E cr = Ba f ν 0 exp U(j) ) [ ( 1 exp πu )] 0j k B T k B T (1.29) E ff = 0 (1.30) j > 1 ( E cr = Ba f ν 0 [1 exp πu )] 0 k B T (1.31) E ff = ρ f (J J c0 ) (1.32) E E = (E 2 cr + E 2 ff) 1/2 (1.33) (1.5) A f(a) = K exp [ (log A log A m) 2 ] 2σ 2 (1.34) 9

17 K σ 2 A m A A E(J) = 0 E f(a)da (1.35) (1.35) E-J [4] 1.3 REBa 2 Cu 3 O 7 δ REBa 2 Cu 3 O x (REBCO) RE=Rare Earth: x = 7 δ δ: J c RE Y, Ne, Sm, Gd, Dy, Ho RE T c RE Gd GdBa 2 Cu 3 O 7 δ (GdBCO) GdBCO YBa 2 Cu 3 O 7 δ T c J c REBCO Y 2 BaCuO 3 Y 2 O 3 BaZrO 3 (BZO) PLD(Pulsed Laser Deposition) REBCO BZO c c c (B c) B c J c 10

18 J c B 2 c /2µ 0 B c D D/2 D/2 ξ ξ > D/2 Û p = B2 c 2µ 0 π ( ) 2 D 2 = πb2 c D 2 8µ 0 (1.36) Ûp D ˆf p = Ûp D = πb2 c D 8µ 0 (1.37) ˆN p F p = ˆN p ˆfp (1.38) F p F p J c = F p /B J c 11

19 1.4 (a) (b) (b) Ginzburg-Lanau B c2 B c2 B c2 B c2 Ginzburg-Lanau [5] Ψ Ginzburg-Landau 1 2m ( i + 2eA)2 Ψ + αψ + β Ψ 2 Ψ = 0 (1.39) m = h/2π h e A α, β Ψ 2 H e z H = B/µ 0 B H B µ 0 H e A = µ 0 H e xi y i y y B c2 (1.39) β Ψ 2 Ψ A x 12

20 Ψ x (1.39) λ 2 2m d2 Ψ dx 2 + 2e2 µ 2 0 m (H2 e x 2 2H 2 c λ 2 )Ψ = 0 (1.40) ( m ) 1/2 λ = 4µ 0 e 2 Ψ 2 (1.41) (1.40) Schrödinger n ( n + 1 ) H e = 2eµ 0 Hc 2 λ 2 (1.42) 2 H e n = 0 H e = H c2 λ ξ H c2 = 4eµ 0H 2 c λ 2 (1.43) λ = 2 2eµ 0 H c ξ (1.44) e ϕ 0 e = h 2ϕ 0 (1.45) (1.44) (1.45) (1.43) H c2 = ϕ 0 2πµ 0 ξ 2 (1.46) B c2 = ϕ 0 2πξ 2 (1.47) B c Pippard B c2 ξ Pippard ξ l 1 ξ = 1 ξ l (1.48) 13

21 ξ 0 BCS Fermi v F Boltzmann k B ξ 0 = v F 5.53k B T c (1.49) l ξ ξ 0 ξ 0 l ξ l l ξ B c2 [6] B c2 B c2 [7] REBCO B c2 J c ) J c (B) = J c (0) (1 BBc2 (1.50) B c2 J c B c2 J c 1.5 B c2 J c B c2 B = 6 T J c 100 B c2 REBCO B c2 1.5 C MgB 2 J c -B B c2 J c [8] 14

22 CuO 2 CuO 2 B c2 ab ξ c ξ ab c B c2 B c2 = ϕ 0 2πξ ξ, B c2 = ϕ 0 2πξ 2 (1.51) B c2 /B c2 = ξ /ξ m a = m b = m m c = m ξ a = ξ b = ξ = ξ (m /m ) 1/2, ξ c = ξ = ξ (m /m ) 1/2 (1.52) ξ m ξ 2 ξ = ξ 3 m am b m c = m 3 λ a = λ b = λ = ( m )1/2 ( ) m 1/2 m λ, λ c = λ = m λ (1.53) λ λ a λ b λ c = λ 3 θ c B c2 (θ) = B c2 ( cos 2 θ + m = B c2 (cos 2 θ + sin 2 θ m ( Bc2 B c2 ) 1/2 ) 2 sin 2 θ ) 1/2 (1.54) [9] (1.54) B c2 θ = 0 c B c J c 15

23 Lorentz B c2 1.6 B c2 J c 0 J c = 0 J c 0 B i B i (T ) 1.6 J c 0 B i 1.6 B c2 16

24 1.8 GdBa 2 Cu 3 O 7 δ (GdBCO) c J c J c BaZrO 3 BZO BZO BZO J c BaHfO 3 (BHO) BHO BHO J c BZO [10] BHO BHO BZO GdBCO B c2 BHO 17

25 2 2.1 ISTEC-SRL PLD(Pulsed Laser Deposition) GdBa 2 Cu 3 O 7 δ (GdBCO) [10] BaHfO 3 (BHO) BaZrO 3 (BZO) REBCO RE: Hastelloy IBAD(Ion Beam Assisted Deposition) MgO PLD CeO 2 PLD GdBa 2 Cu 3 O 7 δ BaHfO 3 BaZrO 3 Sputter Ag Ag/GdBa 2 C 3 O 7 δ (+BaHfO 3 or BaZrO 3 )/CeO 2 /MgO/Hastelloy

26 IBAD IBAD [11] 2.2 Ar + 3 IBAD MgO CeO 2 IBAD 2.2 IBAD [12] 19

27 2.1.3 PLD PLD(Pulsed Laser Deposition) PLD 2 PLD J c PLD GdBCO #1 #3 #4 #6 J c #7 # SQUID T c ISTEC-SRL Sample Material Amount of addition d [µm] T c [K] #1 (Pure) GdBa 2 C 3 O 7 δ #2 (BHO) GdBa 2 C 3 O 7 δ + BaHfO mol% #3 (BZO) GdBa 2 C 3 O 7 δ + BaZrO mol% #4 (BHO 2.5mol) GdBa 2 C 3 O 7 δ + BaHfO mol% #5 (BHO 5.0mol) GdBa 2 C 3 O 7 δ + BaHfO mol% #6 (BZO 5.0mol) GdBa 2 C 3 O 7 δ + BaZrO mol% #7 (BHO Thick) GdBa 2 C 3 O 7 δ + BaHfO mol% #8 (BZO Thick) GdBa 2 C 3 O 7 δ + BaZrO mol%

28 2.2 SQUID c B c J c J c -B - E-J 77.3 K 0 7 T M-T B c2 B c2 -T SQUID 2 mm 2 mm 1cm 3cm 4 2 mm 2 mm J c -B c 0 T J c -B l w d l > w x y z J c Bean 2.3 dx dz A di c di c = J c dxdz A B 21

29 S x ( S = 4x x + l w ) 2 = 4x 2 + 2x(l w) (2.1) B di c dm = SdI c m m = dm = S(x)dI c = S(x)J c dxdz = J c d S(x)dx (2.2) m = J cw 2 (3l w)d (2.3) 12 M m lwd M = J cw (3l w) (2.4) 12l 2.3 dx 22

30 M (2.4) 2 J c M = J cw (3l w) (2.5) 6l J c = 6l M (2.6) w(3l w) (2.6) M J c SQUID cgs [emu] SI m [A m 2 ] = m [emu] 10 3 (2.7) E-J E-J Maxwell Faraday E-J V/m J (2.3) J c J m = Jw2 (3l w)d (2.8) 12 J = 12l w(3l w) m (2.9) m 2.3 Φ Φ = wlb e + µ 0m d (2.10) 23

31 B 0 Be 2.4 c Faraday d l d E 1 E = 2(l + w) dφ (2.11) dt (2.10) (2.11) µ 0 E = 2d(l + w) dm dt (2.12) (2.12) E G E = µ 0G 2d(l + w) dm (2.13) dt G d l L 1 = (µ 0 l/2) log(8l/d) d, l L 2 = πµ 0 l 2 /4d G = L 1 /L 2 E (2.9) (2.13) SQUID E-J M-T B c2 -T Zero Field Cool(ZFC) Field Cool(FC) 24

32 B c2 B i T c T (B c2 ) B c2 T (B i ) B i 2.5 B = 3 T ZFC B = 3 T 78 K T c 90 K 90 K 80 K FC ZFC FC M-T 2.5 2, B i (T ) ZFC FC B c2 (T ) B i (82.0 K) = 3 T, B c2 (83.7 K) = 3 T M-T B c2 -T GdBCO+BHO B = 3 T B i exp. fit m [emu] B c T [K] 2.5 M-T B c2 -T 25

33 2.3 Transmission Electron Microscope(TEM) TEM TEM TEM 100 nm TEM Japan Fine Ceramics Center(JFCC) TEM TEM GdBCO TEM [13] (i-iii) (a-c) 26

34 3 3.1 TEM 3.1(a), (b) BHO BZO c TEM c D d p ˆN p = 1 d 2 p (3.1) B = ˆN p ϕ 0 (3.2) 3.1(a), (b) D, d p, ˆNp, B 3.1 GdBCO/BHO or BZO 3.1 BHO BHO BZO 3.1 Sample D [nm] d p [nm] ˆNp [m 2 ] B [T] Lattice mismatch #2 (BHO) % #3 (BZO) % 27

35 3.1 c TEM (a)#2 (BHO) (b)#3 (BZO) 3.2 J c -B (a), (b) 77.3 K #1 #3 J c (a)b = 0 6 T (b)b = T 3.2(a) J c 3.5 mol% #2 (BHO) J c BZO BHO 3.2(b) #3 (BZO) B = 0 T J c #2 (BHO) B = 0 T J c 2.1 T c BHO B = 0.3 T #1 (Pure) #2 (BHO), #3 (BZO) J c B = 0.3 T 28

36 J c [A/m 2 ] T=77.3 K #1 (Pure) #2 (BHO) #3 (BZO) J c [GA/m 2 ] T=77.3 K #1 (Pure) #2 (BHO) #3 (BZO) B [T] (a) B [T] (b) K #1 #3 J c -B (a)0 6 T (b)0 0.5 T (a), (b) K #2, #4, #5 #3, #6 J c 3.3(a) J c #4 J c J c B = 0 T J c J c (0 T) J c -B 3.3(b) J c 3.4 J c BZO 5 mol% J c 3.1 BHO, BZO J c BHO 3.5 mol% BZO 5 mol% J c BHO 29

37 10 11 T=77.3 K 10 0 T=77.3 K J c [A/m 2 ] #2 (BHO) #4 (BHO 2.5mol) #5 (BHO 5.0mol) J c / J c (0 T) 10 1 #2 (BHO) #4 (BHO 2.5mol) #5 (BHO 5.0mol) B [T] (a) B [T] (b) 3.3 (a)77.3 K #2, #4, #5 J c -B BHO (b) J c (0 T) 77.3 K #2, #4, #5 J c -B T=77.3 K J c [A/m 2 ] #3 (BZO) #6 (BZO 5.0mol) B [T] K #3, #6 J c -B BZO 30

38 K #2, #3, #7, #8 J c BHO J c BZO J c BHO, BZO J c (0 T) 63% J c [14] #7, #8 J c (0 T) 1.3 BHO, BZO J c BZO fire-works [15] BZO B c BHO c [16] BHO c J c BHO BZO J c T=77.3 K J c [A/m 2 ] #2 (BHO) #3 (BZO) #7 (BHO Thick) #8 (BZO Thick) B [T] K #2, #3, #7, #8 J c -B 31

39 3.3 B c2 -T #1 #3 B c2 -T B c B c2 l B c2 l #3 (BZO) #2 (BHO) B c2 #2 (BHO) J c B c2 BHO 6 #1 (Pure) #2 (BHO) #3 (BZO) B c2 [T] T [K] 3.6 #1 #3 B c2 -T #2, #4, #5 #3, #6 B c2 -T BHO, BZO 5 mol% T c T c B c2 B c2 BHO, BZO B c2 32

40 6 #2 (BHO) #4 (BHO 2.5mol) #5 (BHO 5.0mol) B c2 [T] T [K] 3.7 #2, #4, #5 B c2 -T BHO 6 #3 (BZO) #6 (BZO 5mol) B c2 [T] T [K] 3.8 #3, #6 B c2 -T BZO 33

41 4 3 J c B c2 J c BZO BHO B c2 B c B c2 B c2 B c2 -T T c 95% #1 #3, #4 #6 B c2 4.1 db c2 /dt T/T c = 0.95 B c2 -T B c2 BHO 5 mol% B c2 (77.3 K), db c2 /dt B c2 (77.3 K) Pure

42 6 #1 (Pure) #2 (BHO) #3 (BZO) exp. fit 6 exp. fit #4 (BHO 2.5mol) #5 (BHO 5.0mol) #6 (BZO 5.0mol) B c2 [T] 4 B c2 [T] T [K] T [K] 4.1 #1 #3 B c2 -T 4.2 #4 #6 B c2 -T 4.1 B c2 -T Sample T c [K] B c2 (77.3 K) [T] db c2 /dt [TK 1 ] #1 (Pure) #2 (BHO) #3 (BZO) #4 (BHO 2.5mol) #5 (BHO 5.0mol) #6 (BZO 5.0mol) B c2 B c l B c2 D 2 ˆN p

43 ˆN p (3.1) d p 1 d p = (... d p > 0) (4.1) ˆN p (3.2) d p, B D, ˆNp 77.3 K π ˆN p D B c2 4.3 B c2 B c2 BHO BZO B c2 BHO BZO BHO Sample D [nm] ˆNp [m 2 ] d p [nm] B [T] #2 (BHO) #3 (BZO) #4 (BHO 2.5mol) #5 (BHO 5.0mol) #6 (BZO 5.0mol) B c2 [T] exp. fit Pure BHO BZO T = 77.3 K πn p D [ 10 7 m 1 ] π ˆN p D B c2 BHO, BZO 36

44 4.3 B c2 T = 77.3 K B c2 4.3 m = 2 g [17] ζ #1 (Pure) 2π 4 J c 4.5 E-J E c = V/m J c -B #1 #3 #1 (Pure) #2 (BHO), #3 (BZO) A m, B c2, γ B c2 #2, #3 A m, B c2 A m B c2 BHO BZO A m ( ) B c2 2 2 #4 #6 A m, B c K Sample A m [Am 2 T 1 γ ] B c2 [T] γ σ 2 ζ #1 (Pure) π #2 (BHO) #3 (BZO) #4 (BHO 2.5mol) #5 (BHO 5.0mol) #6 (BZO 5.0mol)

45 g #1 (Pure) #2 (BHO) #3 (BZO) #4 (BHO 2.5mol) #5 (BHO 5.0mol) #6 (BZO 5.0mol) T = 77.3 K E [V/m] #2 (BHO) T = 77.3 K exp. theo. 1 T 2 T 3 T B [T] 4.4 g 2 g J [A/m 2 ] #2 E-J T=77.3 K T=77.3 K exp. theo. exp. theo. J c [A/m 2 ] #1 (Pure) #2 (BHO) #3 (BZO) J c [A/m 2 ] #4 (BHO 2.5mol) #5 (BHO 5.0mol) #6 (BHO 5.0mol) B [T] 4.6 #1 #3 J c -B B [T] 4.7 #4 #6 J c -B 38

46 4.4 Pure BHO, BZO BHO BZO K c ξ 77.3 K 4.8 nm D/2 B c (1.37) ˆf p = πb2 c D 8µ 0 (4.2) B c B c (0) = 2 T ) B c (T ) = B c (0) (1 TTc (4.3) [18, 19] F p = η ˆN p ˆfp (4.4) η η = 1/2 (4.4) B B B B (4.2) (4.4) B J p = F p B = πη ˆN p B 2 c D 8µ 0 B (4.5) B B c2 39

47 A m σ A m A s A s = exp( 2σ)A m = A m 1.21 (4.6) A s B γ 1 A s B γ 1 Pure, BHO, BZO Pure A s A s0 A s0 B γ 1 A s0 B γ 1 J p J s0 (B) = K[(A s0 B γ 1 ) 2 + Jp] 2 1/2 (4.7) K J s0 (B) A s B γ 1 B 0.2 T #2 (BHO) 3.1 D = 4.4 nm, ˆNp = , B = 1.7 T (4.2) (4.3) (4.4) ˆf p = N/m, F p = N/m 3 BHO (4.5) J p = A/m 2 B #1 (Pure) A m = AT 1 γ /m 2, γ = 0.52 A s0 B γ 1 = A/m 2 K = 0.94 B #2 (BHO) (4.7) J s0 (B ) = A/m 2 A m (4.6) A s B γ 1 = A/m 2 J s0 (B ) B =0.2 T J s0 (0.2 T) = A/m 2, A s (0.2) γ 1 = A/m 2 #3 #6 4.4 J s0 (B) A s B γ B J p BZO BHO BZO #2 (BHO) #6 (BZO 5mol) #6 J p #2 1.3 K #2 #6 Pure #2 40

48 BZO #2 J c K 4.4 Sample A s0 B γ 1 J p J s0 (B ) A s B γ 1 K [A/m 2 ] [A/m 2 ] [A/m 2 ] [A/m 2 ] #1 (Pure) 1.00 #2 (BHO) #3 (BZO) #4 (BHO 2.5mol) #5 (BHO 5.0mol) #6 (BZO 5.0mol) #2 (BHO) T = 77.3 K 10 #3 (BZO) T = 77.3 K J [ A/m 2 ] 5 A s B γ 1 J s0 J [ A/m 2 ] 5 A s B γ 1 J s B* 2 B [T] 4.8 #2 J s0 (B) A s B γ 1 K = 0.94, B = 1.7 T B (B*) 2 B [T] 4.9 #3 J s0 (B) A s B γ 1 K = 0.72, B = 1.0 T B 41

49 J [ A/m 2 ] #4 (BHO 2.5mol) T = 77.3 K A s B γ 1 J s0 J [ A/m 2 ] #5 (BHO 5.0mol) T = 77.3 K A s B γ 1 J s B* 2 B [T] 4.10 #4 J s0 (B) A s B γ 1 K = 0.39, B = 1.5 T B B* 3 B [T] 4.11 #5 J s0 (B) A s B γ 1 K = 0.25, B = 2.4 T B J [ A/m 2 ] 10 5 #6 (BZO 5.0mol) T = 77.3 K A s B γ 1 J s B* 2 B [T] 4.12 #6 J s0 (B) A s B γ 1 K = 0.78, B = 1.4 T B 42

50 K 4.4 K T c K T c K 4.13 T c K BHO, BZO K K J c T c K Pure BHO BZO T c [K] 4.13 K T c BHO, BZO 4.5 B c2 4.4 B c2 B c2 J c -B J c 4.14 #2 (BHO) #6 (BZO 5mol) J c -B B c2 #2, #6 BHO, BZO 5mol 4.15 F p -B BHO, BZO 5mol J c J c J c 43

51 J c A/m 2 B i #2, #6, BHO, BZO 5mol B i 4.4, 4.3, 3.2, 3.0 B i J c B c T=77.3 K #1 (Pure) #2 (BHO) BHO* #6 (BZO 5.0mol) BZO 5.0mol * exp. theo. J c [A/m 2 ] B [T] #1, #2, #6 J c -B B c2 #2, #6 BHO, BZO 5mol 4 T=77.3 K #1 (Pure) #2 (BHO) BHO * #6 (BZO 5mol) exp. theo. F p [GN/m 3 ] 2 BZO 5mol* B [T] #1, #2, #6 F p -B B c2 #2, #6 BHO, BZO 5mol 44

52 4.6 BHO J c B c2 B c2 B c2 BZO BHO J c #5 (BHO 5mol) #5 K #2 (BHO) BHO K = 0.94 #5 J c -B F p -B BHO 5mol-improved BHO 5mol-improved B i 5 T F p BHO BHO J c [A/m 2 ] #1 (Pure) #2 (BHO) T=77.3 K #5 (BHO 5mol) exp. BHO 5.0mol improved theo B [T] #1, #2, #5 J c -B K = 0.94 #5 BHO 5mol-improved 45

53 F p [GN/m 3 ] 4 2 T=77.3 K exp. theo. #1 (Pure) #2 (BHO) #5 (BHO 5.0mol) BHO 5.0mol improved B [T] #1, #2, #5 F p -B K = 0.94 #5 BHO 5mol-improved 4.7 BHO BZO BHO BZO #2, #6 B c2 (77.3 K) 7.96 T, 6.62 T BHO db c2 /dt 0.626, B 1.7 T, 1.4 T BHO J p #2, # A/m 2, A/m 2 BZO BHO BZO 4.5 BHO BZO 4.5 BHO BZO BHO BZO B c2 46

54 5 GdBa 2 Cu 3 O 7 δ (GdBCO) BaHfO 3 BHO BaZrO 3 BZO J c J c BHO B c2 B c2 BHO B c2 B c2 J c GdBCO J c B c2 BHO BZO BHO BHO 47

55 ISTEC-SRL NEDO ISTEC-SRL JFCC 48

56 [1] K. Yamafuji, T. Fujiyoshi, K. Toko, and T. Matsushita: P hysica C 159 (1989) 743. [2] : [ 1998]. [3] T. Matsushita: P hysica C 217 (1993) 461. [4] M. Kiuchi, K. Noguchi, T. Matsushita, T. Kato, T. Hikata, and K. Sato: P hysica C 278 (1997) 62. [5] V. L. Ginzburg and L. D. Landau: Zh. Eksperim. i T eor. F iz. 20 (1950) [6],,, :, (2004) p. 27. [7] M. Kiuchi, A. Yamamoto, and S. Awaji: Flux pinning properties in MgB 2 bulk. [8] S.X. Dou, S. Soltanian, J. Horvat, X.L. Wang, S.H. Zhou, et al.: Appl. P hys. Lett. 81 (2002) [9] :, (1994) p [10] H. Tobita, K. Notoh, K. Higashikawa, M. Inoue, T. Kiss, T. Kato, T. Hirayama, M. Yoshizumi, T. Izumi, and Y. Shiohara: Supercond. Sci. T echnol. 25 (2012) (4pp). [11],,,,,,,,, : RE123, 115, p , [12] D.P. Norton, C. Park, C. Prouteau, D.K. Christen, M.F. Chisholm, J.D. Budai, S.J. Pennycook, A. Goyal, E.Y. Sun, D.F. Lee, D.M. Kroeger, E. Specht, M. Paranthaman, and N.D. Browning: M aterials Science and Engineering B 56 (1998) [13] T. Kato, R. Yoshida, N. Chikumoto, S. Lee, K. Tanabe, T. Izumi, T. Hirayama, and Y. Shiohara: P hysica C 471 (2011)

57 [14] Y. Takahashi, M. Kiuchi, E.S. Otabe, T. Matsushita, K. Shikimachi, T. Watanabe, N. Kashima, and S. Nagaya: P hysica C 470 (2010) [15] A. Ichinose, P. Mele, T. Horide, K. Matsumoto, G. Goto, M. Mukaida, R. Kita, Y. Yoshida, and S. Horii: P hysica C 468 (2008) [16] D. Yokoe, T. Kato, H. Tobita, A. Ibi, M. Yoshizumi, T. Izumi, T. Hirayama, and Y. Shiohara: J. Mater. Sci. 48 (2013) [17] K. Himeki, M. Kiuchi, E.S. Otabe, T. Matsushita, K. Shikimachi, T. Watanabe, N. Kashima, S. Nagaya, Y. Yamada, Y. Shiohara: P hysica C 469 (2009) [18] T. Matsushita, M. Kiuchi, T. Haraguchi, T. Imada, K. Okamura, S. Okayasu, S. Uchida, J. Shimoyama, K. Kishio: Supercond. Sci. T echnol. 19 (2006) [19] T. Matsushita: P hysica C 205 (1993)

BaHfO 3 PLD GdBa 2 Cu 3 O 7 δ 24 2 17 1 1 1.1.................................. 1 1.2............................... 2 1.3............................. 2 1.4................................. 3 1.5.........................

More information

Ni PLD GdBa 2 Cu 3 O 7 x 2 6

Ni PLD GdBa 2 Cu 3 O 7 x 2 6 Ni PLD GdBa 2 Cu 3 O 7 x 2 6 1 1 1.1.................................. 1 1.2................................ 2 1.2.1......................... 3 1.3 RE 1 Ba 2 Cu 3 O 7 x...................... 3 1.3.1...............................

More information

10674047 24 2 7 1 1 1.1.................................. 1 1.2................................ 2 1.3......................... 3 1.4......................... 3 1.5............................ 3 1.6..........................

More information

MgB 2 Mg B

MgB 2 Mg B MgB 2 Mg B 23 2 22 1 1 1.1..................................... 1 1.2.............................. 4 1.3.................................. 5 1.4................................... 5 1.5.....................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

19 /

19 / 19 / 1 1.1............................... 1. Andreev............................... 3 1.3..................................... 3 1.4..................................... 4 / 5.1......................................

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63> スピントロニクスの基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077461 このサンプルページの内容は, 初版 1 刷発行時のものです. i 1 2 ii 3 5 4 AMR (anisotropic magnetoresistance effect) GMR (giant magnetoresistance

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40,

2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40, 008/0/18 08:40-10:10, 1:50-14:0 14:30-16:00, 16:10-17:40, 1pt A 1911 Leiden Heike Kammelingh-Onnes H.Kammelingh Onnes 1907 He 1 4. K H H c T c T H c Hg:40 mt, Pb:80 mt, Sn:30 mt 100 mt I c H c H c H

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

untitled

untitled D nucleation 3 3D nucleation Glucose isomerase 10 V / nm s -1 5 0 0 5 10 C - C e / mg ml -1 kinetics µ R K kt kinetics kinetics kinetics r β π µ π r a r s + a s : β: µ πβ µ β s c s c a a r, & exp exp

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

Xray.dvi

Xray.dvi 1 X 1 X 1 1.1.............................. 1 1.2.................................. 3 1.3........................ 3 2 4 2.1.................................. 6 2.2 n ( )............. 6 3 7 3.1 ( ).....................

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

untitled

untitled 1. Web21 2001 4 2. Web21 2001 4 3. Web21 2001 4 4. Web21 2001 4 5. BCS Web21 2001 6 6. Web21 2001 6 7. Web21 2001 8 8. - Web21 2001 10 9. 9-1. Web21 2001 10 9-2. d Web21 2001 12 9-3. Web21 2001 12 1. T

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

eto-vol1.dvi

eto-vol1.dvi ( 1) 1 ( [1] ) [] ( ) (AC) [3] [4, 5, 6] 3 (i) AC (ii) (iii) 3 AC [3, 7] [4, 5, 6] 1.1 ( e; e>0) Ze r v [ 1(a)] v [ 1(a )] B = μ 0 4π Zer v r 3 = μ 0 4π 1 Ze l m r 3, μ 0 l = mr v ( l s ) s μ s = μ B s

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information