RIMS98R2.dvi

Similar documents
z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy


(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

構造と連続体の力学基礎

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

Chap11.dvi


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

body.dvi

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

2 2 L 5 2. L L L L k.....

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb


Microsoft Word - 信号処理3.doc

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

chap1.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t


#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =


simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

II 2 II

Part () () Γ Part ,


i

高等学校学習指導要領

高等学校学習指導要領

Z: Q: R: C:

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

Untitled

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

Bessel ( 06/11/21) Bessel 1 ( ) 1.1 0, 1,..., n n J 0 (x), J 1 (x),..., J n (x) I 0 (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bess

, ( ) 2 (312), 3 (402) Cardano

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

Z: Q: R: C: sin 6 5 ζ a, b

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10


2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0,



(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

第10章 アイソパラメトリック要素

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d

日本内科学会雑誌第102巻第4号


f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

A



pdf

°ÌÁê¿ô³ØII

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

Gmech08.dvi

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

chap03.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Z: Q: R: C: 3. Green Cauchy

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

29

30

II 1 II 2012 II Gauss-Bonnet II

Transcription:

RIMS Kokyuroku, vol.084, (999), 45 59. Euler Fourier Euler Fourier S = ( ) n f(n) = e in f(n) (.) I = 0 e ix f(x) dx (.2) Euler Fourier Fourier Euler Euler Fourier Euler Euler Fourier Fourier [5], [6] Euler Fourier 2 Euler Euler S = ( ) n a n (2.) S Euler = ( 2 2 Δ)n a 0, (Δa n a n+ a n ) (2.2) Euler N [3] S (N) Euler = N ( 2 2 Δ)n a 0 = N m=0 w (N) m ( ) m a m (2.3)

w m (N) Euler w (N) m = N n=m+ 2 N ( ) N n N w m (N) w m (N) w (N) m m+ 2 N/4 e (x N/2)2 /(2 N/4) dx, m/ N/2 N/2 N w (N) m N (2.4) e t2 dt (2.5) w m (N) N/2 2 erfc(m/ N/2), N (2.6) erfc(x) 2 e t2 dt p, q N x w(x; p, q) = erfc(x/p q) (2.7) 2 weight 0 0 0 m : w (N) m w(x; p, q) ( N =6 p = q =(N/2) /2 ) Euler w m (N) w(x; p, q) S (N) = N ( ) n f(n) (2.8) N S w (N) = w(n; p, q)( ) n f(n) (2.9) 2

w(x; p, q) = 2erfc(x/p q) (p, q ) f(z) arg(z +/2) δ ( δ δ</2 ) f(z) M lim max f(r /2+iR tan θ) =0 R θ δ α tan δ, 0 <α< S ( ) S ( ) w < M +α 2 e α/2 ( p α 2 e(q αp/2) 2 /( α 2) + 2 α e(q αp)q ) e q 2 (2.0) q = q +/(2p) S (N) S w (N) S (N) S w (N) = 2i ( w(z; p, q))f(z) dz sin z (2.) C 2 C Im z N 2 + iαn C + C N 2 2 3 N N Re z C N 2 iαn S (N) S (N) w 2 C 2: C sin z w(z; p, q) f(z) dz (2.2) erfc(z) = e (t+z)2 dt 2 0 = 0 e (t+z)2 dt (2.3) + e t2 z 2 dt =+ 2 erfc(z) 0 2 e z2, Re z 0 0 e t2 z 2 dt = 2 e z2, Re z<0 (2.4) 3

(2.2) C N 2 C N sin z w(z; p, q) f(z) dz < ( 2 cosh y dy + ) +(Nα/p) 2 2 e ((N /2)/p q)2 max f(n /2+iNy) y α 0, N (2.5) (2.2) C + ( z = t /2+iαt) / sin z sin z = w(z; p, q) w(z; p, q) = < 2 e 2iz eiz 2 +e 2αt cos 2t e αt 2 e α/2 e αt (2.6) 2 erfc((t /2)/p q + iαt/p) + ) 2 +(αt/p) 2 2 e (t/p q, t pq (2.7) ) 2 +(αt/p) 2 2 e (t/p q, t < pq q = q +/(2p) C + 2 C + sin z w(z; p, q) f(z) dz < ( 2 2 e α/2 e αt ) 2 +(αt/p) 2 0 2 e (t/p q M +α 2 dt + e αt M ) +α 2 dt pq ) < M ( +α 2 p e α/2 2 α 2 e(q αp/2)2 /( α2) + αp)q α e(q e q 2 (2.8) (2.2) C C + S ( ) S ( ) w = lim w N S(N) S (N) < M +α 2 e α/2 ( p α 2 e(q αp/2) 2 /( α 2) + 2 α e(q αp)q ) e q 2 (2.9) [] p, q α q = q + 2p = α 2 p (2.20) 4

S w ( ) S ( ) S ( ) w < M +α 2 e α/2 ( p + 2 ) e q2 (2.2) α 2 α (2.20) α q S w ( ) S w ( ) N S w (N) w(n; p, q) n w(n; p, q) 2 exp( (n/p q)2 ) N ( ) (2.20) (2.22) S w (N) S ( ) S (N) w S ( ) S ( ) w + N = 2pq + = 4 α q 2 (2.22) S ( ) S ( ) w + M 2 w(n; p, q)( ) n f(n) n=n n=n exp( (n/p q) 2 ) = O(α 2 ( α) /2 qe q2 ) = O(α 3/2 ( α) /2 Ne αn/4 ), N (2.23) Euler S w (N) N S = ( ) n n + = log 2 (2.24). Euler 2. Euler S (N) Euler = N ( 2 2 Δ)n a 0 N S w (N) = w(n; p, q)( ) n a n 2 p, q N =2pq, q = p/2 Euler Euler 5

N 2 2.3 0 2. Euler 2 2. 0 8 2. Euler 2.6 0 9 3 Fourier Euler Fourier I = ( ω>0 ) Euler 0 f(x)e iωx dx (3.) L I w (L) = 0 w(x; p, q)f(x)e iωx dx (3.2) w(x; p, q) φ(t) dt =, lim φ(t) = 0 (3.3) t ± φ(t) w(x; p, q) = x/p q φ(t) dt (3.4) p, q L ω f(x) Euler I w (L) L I φ(t) Euler 2 w(x; p, q) = 2erfc(x/p q) ( p, q ) f(z), E(z; ω) 0 arg(z r) δ ( r ω, δ δ</2 ) f(z) M, E(z; ω) M 2 e iωz lim max f(r + r + ir tan θ) =0 R 0 θ δ α tan δ, 0 <α< f(x)e(x; ω) dx w(x; p, q)f(x)e(x; ω) dx r r ( M M 2 +α 2 p 2 α 2 e(q ωαp/2)2 /( α2) + ) ωαp)q ωα e(q e q 2 (3.5) q = q r/p ΔI (R) w = = r+r r r+r r r+r f(x)e(x; ω) dx w(x; p, q)f(x)e(x; ω) dx r ( w(x; p, q))f(x)e(x; ω) dx (3.6) (r, r + R) 3 C +, C R 6

Im z C + R + r + iαr C R Re z r R 3: C + + C R ΔI (R) w = ( w(z; p, q))f(z)e(z; ω) dz C + +C R w(z; p, q) f(z) E(z; ω) dz (3.7) C + +C R [ ] r =0, E(z; ω) = exp(iωz) Fourier (3.) w(x; p, q) I w = w(x; p, q)f(x)e iωx dx (3.8) p, q α I I w <M +α 2 0 q = ωα 2 p (3.9) ( p 2 α + ) e q2 (3.0) 2 ωα w(x; p, q) I I w Euler (3.2) (3.8) L I w I (L) w L =2pq = 4 ωα q2 (3.) L w(x; p, q)f(x)e iωx dx M exp( (x/p q) 2 ) dx 2 2pq M p e q2 (3.2) 4 7

(3.0) 2( Euler ) (3.9) (3.) w(x; p, q) = 2erfc(x/p q) Euler I I w (L) I I w + I w I w (L) ( +α < M 2 ) p p +α 2 2 + + α 2 4 ωα e q2 = O((ωα) /2 ( α) /2 Le ωαl/4 ), L (3.3) p, q e q2 q p p α ω L 2 E(z; ω) Hankel Fourier Bessel e iωz 4 Euler Euler Fourier Euler f(x) Fourier F (ω) = f(x)e iωx dx (4.) 2 ŵ(x; p, q) = x/p+q x/p q φ(t) dt (4.2) Fŵ(ω) = ŵ(x; p, q)f(x)e iωx dx (4.3) 2 φ(t) (3.3) (4.3) Fŵ(ω) = Ŵ (ω ω )F (ω ) dω (4.4) Ŵ (ω) ŵ(x; p, q) Fourier Ŵ (ω) = ŵ(x; p, q)e iωx dx 2 = sin(pqω) 2Φ(pω) (4.5) ω Φ(ω) = φ(x)e iωx dx (4.6) 2 8

(4.4) Fŵ(ω) = F (ω ) sin(pq(ω ω )) (ω ω 2Φ(p(ω ω )) dω (4.7) ) sinc F (ω), Φ(ω) sinc q O(exp( Cq)) O( x m ) Fourier ω m f(z) f( z) z 2 F (ω) Re ω = ±0 sinc (4.7) F (ω) Φ(ω) 3 F (ζ) F ( ζ) Φ(p(ω ζ)) Φ(p(ω + ζ)) arg(ζ) <γ (γ >0 ω 0 ) γ lim F (Re iθ )Φ(p(ω Re iθ )) exp( pq Im Re iθ ) dθ =0 R ± γ lim ε ±0 γ 0 <θ<γ γ F (εe iθ )Φ(p(ω εe iθ )) εdθ =0 exp( pq Im ζ ) F (ω) Fŵ(ω) F (ζ) Φ(p(ω ζ)) dζ (4.8) C θ+ +C θ ω ζ C θ+ C θ 4 Im ζ C θ C θ+ θ θ C θ C θ+ Re ζ 4: C θ+ C θ sin(pqω) ω = exp(+ipqω) exp( ipqω) 2iω 2iω = exp(+ipq(ω + i0)) exp( ipq(ω i0)) 2i(ω + i0) 2i(ω i0) = exp(+ipq(ω + i0)) exp( ipq(ω i0)) + δ(ω) 2i(ω + i0) 2i(ω i0) (4.9) 9

(4.7) C θ+ C θ [] 3 ω Φ(ω ) p Φ(p(ω ζ)) φ(t) exp( pq Im ζ ) sinc p, q Euler Fŵ(ω) L ± f(±z) ŵ(±z; p, q) 2 φ(t) t t φ(±t)dt. ω Φ(ω ) 2. t t φ(±t)dt Euler I 0 -sinh Φ(ω) = I 0(β ω 2 ), ω (4.0) 2I 0 (β) Φ(ω) = 0, ω > (4.) [2] w(x; p, q) = sinh β 2 t 2 dt (4.2) I 0 (β) x/p q β 2 t 2 Euler f(x) 5 Fourier Fourier Euler Fourier I = 0 cos x +x 2 dx = K 0() (5.) Euler Legendre-Gauss (5.) (j+) cos x I = I (j), I (j) = dx (5.2) j=0 j +x 2 I (j) I [5] 0

. Euler : Euler (φ(t) = /2 e t2 q = p/2 =4 L =2pq) 60 Gauss 2. : Euler (24 ) 2 Gauss 0 7 : I Euler 60 2. 0 9 288 4. 0 9 Euler /5 I sin x I 2 = dx =0.6467622779 (5.3) +x2 0 2 Euler φ(t) = /2 e t2 q = p/2 =4 L =2pq. 2. Legendre-Gauss 3. Clenshaw-Curtis (Chebyshev ) 2: I I 2 Euler I I 2 20 5.0 0 9 - - Legendre-Gauss 60 2. 0 9 60 7.0 0 9 Clenshaw-Curtis 65 7.6 0 9 65 2.0 0 8 Clenshaw-Curtis Legendre-Gauss 2 2 x = ±i I [], [4] Bessel xj 0 (x) I 3 = 0 +x 2 dx = K 0() (5.4) J 0 (x) I 4 = dx = I +x 2 0(/2)K 0 (/2) (5.5) 0 Fourier Euler ( φ(t) = /2 e t2 q = p/2 =4 L =2pq)

. Legendre-Gauss 2. Clenshaw-Curtis 3 3: Bessel I 3 I 4 I 3 I 4 Legendre-Gauss 60. 0 9 60 8.9 0 9 Clenshaw-Curtis 65.3 0 8 65.7 0 8 Bessel Euler Euler I I 2. Euler ( ) q = p/2 =4 2. Euler 2(I 0 -sinh ) p =/ω = β = q =20 w(x; p, q) = Legendre-Gauss 4 w(x; p, q) = erfc(x/p q) (5.6) 2 sinh β 2 t 2 dt (5.7) I 0 (β) x/p q β 2 t 2 4: I I 2. 60 2. 0 9 60 7.0 0 9 2.I 0 -sinh 40 3.8 0 9 40 4.4 0 8 I 0 -sinh Euler 2/3 6 Fourier f(x) Fourier ( ω ) F (ω) = f(x)e iωx dx (6.) 2 f(x) x Euler F w (L) (ω) = L+ w( x ; p, q)f(x)e iωx dx (6.2) 2 L 2

F w (L) (ω) h F w (N,h) (ω) = h 2 N + n= N w( nh ; p, q)f(nh)e iωnh ( N ± = L ± /h ) Euler p, q L ± ω p, q L + = N/2, L = N/2 ω =2k/(Nh) F w (N,h) ( 2 Nh k)= h 2 N/2 n= N/2 (6.3) w( nh ; p, q)f(nh)e 2ink/N (6.4) FFT w(x; p, q) = 2erfc(x/p q) (6.4) 5, 6 Fourier f (x) = +x 2, (F (ω) = K 0( ω )) f 2 (x) = x 3 4+x 4, (F 2(ω) =i sgn ω e ω cos ω) 2 F w (N,h) 0 0 F w (N,h) 0 0 0 0 0 0 200 0 200 k 200 0 200 k (a) f(x) =f (x) (b) f(x) =f 2 (x) 5: Fourier : F w (N,h) ( 2 Nhk), N = 52, h =0.25 N = 52, h =0.25 53 ( 6 ) Euler 0 2 p, q exp( q 2 )=0 2, L = Nh/2=2pq w(x; p, q) 6 k ω = 2 2 Nh N 2 Nh k ω ω max = =8 ω ω ω =8 2 Euler ω ω =2q/p =3.45 ( k =35.) h ω </h=8 I 0 -sinh w(x; p, q) = sinh β 2 t 2 dt (6.5) I 0 (β) x/p q β 2 t 2 3

F F w (N,h) F F w (N,h) 0 0 0 0 no weight no weight 0 0 0 0 200 0 200 k 200 0 200 k (a) f(x) =f (x) (b) f(x) =f 2 (x) 6: Fourier : F w (N,h) ( 2 Nhk), N = 52, h =0.25 (6.4) 7 F F w (N,h) F F w (N,h) 0 0 0 0 0 0 0 0 200 0 200 k 200 0 200 k (a) f(x) =f (x) (b) f(x) =f 2 (x) 7: Fourier - I 0 -sinh : F w (N,h) ( 2 Nhk), N = 52, h =0.25 N = 52, h =0.25 Euler 0 5 p, q, β β = q = log(0 5 ), L = Nh/2=2pq w(x; p, q) 7 k < 2 ω =/p =2.6 ( k =22.0) Euler ω 2/3 ω 4

7 Fourier Euler Euler Fourier Fourier FFT Euler Bessel [] H. Takahasi and M. Mori, Error Estimation in the Numerical Integration of Analytic Functions, Rep. Comput. Centre Univ. Kyoto 3, 970, 4 08. [2] J.F.Kaiser, Nonrecursive digital filter design using the I 0 sinh window function, Proc. IEEE International Symposium on Circuits and Systems, 974. [3] Jet Wimp, Sequence Transformations and their Applications, Academic Press, 98. [4],,, 975. [5] Philip J. Davis and Philip Rabinowitz, Methods of Numerical Integration (Second Edition), Academic Press, 984. [6] T. Ooura and M. Mori, The Double Exponential Formula for Oscillatory Functions Over the Half Infinite Interval, Journal of Computational and Applied Mathematics 38, 99, 353 360. [7],,, 997. 5