Similar documents
Microsoft PowerPoint - 基礎化学4revPart2 [互換モード]

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

日本内科学会雑誌第102巻第4号

Stereoelectronic Effect

Part () () Γ Part ,


1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (


本文/目次(裏白)

0.1 (77 :21-25),,... VSEPR. (1) 2 ( ). (2), ( ). (3),. (4),. (5) 3,. (6),. *1 (7) *2. (8),Li,Be,B. 1:. VSEPR( ). VSEPR. (1),.. (2), >, > (3

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード]

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Z: Q: R: C: sin 6 5 ζ a, b

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

LLG-R8.Nisus.pdf

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

Z...QXD (Page 1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

untitled

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

ohp_06nov_tohoku.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1



keisoku01.dvi

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

,,..,. 1

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B


V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

koji07-01.dvi

: , 2.0, 3.0, 2.0, (%) ( 2.

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

untitled

Ł\”ƒ-2005

Microsoft Word - 11問題表紙(選択).docx

液晶の物理1:連続体理論(弾性,粘性)

第90回日本感染症学会学術講演会抄録(I)

i

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Mott散乱によるParity対称性の破れを検証

統計的データ解析

meiji_resume_1.PDF

s s U s L e A = P A l l + dl dε = dl l l

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

プリント

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

201711grade1ouyou.pdf

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0


Note.tex 2008/09/19( )


(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

ohpmain.dvi

B


BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ


The Physics of Atmospheres CAPTER :

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

arxiv: v1(astro-ph.co)

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t


QMII_10.dvi

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

( ) ( )

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ


輻射の量子論、選択則、禁制線、許容線

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

untitled

Transcription:

Molecule tomic rbital bridied tomic rbital Valence Shell Electron Pair Repulsion Rule Molecular rbital

2 1+ + 1+ 1+ 1+ 2 9+ + 9+ 9+ 9+

2 1+ 1+ 1s 1s

2 9+ 9+ 2p 2p 9+ () 2 (2p ) 2 (2p ) 2 (2p ) 1

Energ 3p l l 2 - + π π 3p π 3p 3p 3p 3p 3p 3p π 3p 1s ε 1s π 3p π 3p valence electrons + + 2 Molecular rbitals M ormation energ E ond rder () 3s 3s l l l l M 3s 3p 2 + 2 2 1-2 ε - ε 1 0.5 3s 2-3 - ε 0.5 l 2 = 1 e 2 4 0 0 l 2 + = 1.5 e 2 + 3 - ε 0.5

Energ - + ψ 2 = c b1 φ 1 + c b2 φ 2 φ 2 + ε + Molecular rbitals M φ 1 E 2 = α - β ε = β E = α ε = β E 1 = α + β ψ 1 = c a1 φ 1 + c a2 φ 2 large 12 = φ 1 φ ˆ 2 dτ 11 = 22 = φ 1 φ ˆ 1 dτ = φ 2 φ ˆ 2 dτ 12 = φ 1 φ ˆ 2 dτ S 12 = φ 1 φ 2 dτ (=0) Energ φ 2 short ψ ε ψ r φ 1 12, S 12 ψ ψ small r r Distance (r) large 12, S 12 small Interaction π Interaction ψ ψ long Energ ψ bonding interaction bonding interaction ψ φ 2 φ 1 ψ antibonding interaction antibonding interaction ε ψ ψ ψ o Interaction large ngle (θ) small

i 2 ~ 2 2 ~ 2 2p 4 u 4 u 4 u 2p 2p 2π g π 2p 2p 2p 2π g π 2p 2p π 2p π 2p 3 g 2p 3 g 2p 2p 1π u π 2p 2π g 2 u 1π u π 2 u 1 g 3 g 2 u π 2p π 2p 1π u 1 g X X X X M X X X X M 2p 2 u 3 g i 2 e 2 2 2 2 2 2 Valence electrons 2 4 6 8 10 12 14 1 g Unpaired electrons 0 0 2 0 0 2 0 1 0 1 2 3 2 1 Distance(X-X), Å 2.673-1.59 1.243 1.098 1.208 1.41 ond formation 101-291 599 942 494 155 energ, kj/mol

2 2 4 u 2π g π UM 4 u 2π g π UM M 2p 2p 2p 2p 2p 2p 2p 2p 2p 3 g 1π u π 2 u 2p 2p M 1π u 3 g π 2p 1 g 2 u 1 g M 2 = 3.0 + 2 = 2.5 M + 2 2-2 2-2 superoide peroide Valence electrons 11 12 13 14 Unpaired electrons 1 2 1 0 2.5 2 1.5 1 Distance(-), Å 1.12 1.21 1.33 1.49 ν-, cm -1 1905 1580 1097 802

Energ φ b s ε - + ψ 2 = c' a φ a - c' b φ b (c' b 2 > c' a2 ) 1s n 2p nonbonding orbital 2p n 2p + ε + Molecular rbitals M φ a s ψ 1 = c a φ a + c b φ b 2 (c b < c a2 ) M ε ε = 1 ( ab ) 2 ( φ ) 2 a φ ˆ b dτ = aa - bb φ a φ ˆ a dτ - φ b φ ˆ b dτ

π (SM) + - 2p 2p π π π π 2p 2p 2p π π π π 2p M VE 10 11 12 unpaired 0 1 2 electrins = 2.5 3 2.5 2 d(-) 1.06 Å 1.15 Å

- R + π (UM) π 2p 2p 2p π π 2p 2p 2p π (M) π π π π π π π M π = 3

2 1+ + 8+ + 1+ 1+ 8+ 1+? = 3 + 3 4 + 4

e e, linear linear e e 180 2 2 trigonal planar trigonal planar angular e 3-3 2-120 e e tetrahedral e e 109.28 tetrahedral e - e 4 trigonal pramidal angular 4 2 + Pl 3 4 Pl 2 S 3 trigonal bipramidal e e e 90 e 120 trigonal e bipramidal reduced epand 3 107.2 P 3 93.2 s 3 92.1 Sb 3 91.6 2 104.45 2 S 92.1 2 Se 90.6 2 Te 90.2 2 + 180 2 132 2-115 SbPh 5, Inl 2-5 (square pramidal) Ter 6 2-, Sbr6 3- (octahedral, stereochemicall inactive pair) octahedral e e e e pentagonal bipramidal e e e e e e e e e 90 90 72 Pl 5 octahedral square pramidal - P 6 S 6 r 5 pentagonal bipramidal I - 6 I 7 butterfl T-shape linear l 3 S 4 r 3 Tel 4 Il - 2 Xe 2 square planar Xe 4 ngew. hem. Int. Ed. Engl., 1996, 35, 495-514

l ( ) + P l 104.3 l 106.5 l 2 3 2 3 4 Pl4 + 101 187 S 87.5 l Xe l l l l l l S 4 Pl 5 Pl - 6 84 I r VE = 7(I)+71() = 14 = 7bp l 3 r 5 I7 l P l Xe Xe 2 Xe 5 l - l P VE = 8(Xe)+41() = 12 = 4bp + 2lp l VE = 5(P)+41(l)-1 = 8 = 4bp VSEPR

sp2 hbridiation p p p p sp 2 T 1 T 2 T 3 T s 1 = (1/3) 1/2 s + (4/6) 1/2 p T 2 = (1/3) 1/2 s - (1/6) 1/2 p + (1/2) 1/2 p T 2 tomic rbital T 3 = (1/3) 1/2 s - (1/6) 1/2 p - (1/2) 1/2 p sp3 hbridiation T 2 T 3 p sp 2 motif T 1 p p p sp 3 T 1 T 1 t 1 t 2 t 3 t 4 T 3 trigonal planar s tomic rbital t 4 t 3 t 1 t2 tetrahedral t 1 = 1/2(s + p + p + p ) t 2 = 1/2(s + p - p - p ) t 3 = 1/2(s - p + p - p ) t 4 = 1/2(s - p - p + p ) p p p sp hbridiation p p p p s tomic rbital D 1 D 2 D 1 D 1 = (1/2) 1/2 (s + p ) D 2 = (1/2) 1/2 (s - p ) sp D 2 D 1 D 2 p sp motif p D 1 linear

sp3 2p 2p 2p 2p 2p 2p sp 3

sp3 6 sp 3 7 sp 3 6 sp 3

sp 3 l 1s 2p 3p 3 3 sp 3 sp 3 sp 3 sp 3 sp 3 2 3 sp 3 sp 3 sp 3 sp 3 3 2

2p sp 2 2p 2p 2p 2p 2p 2p 2p 1 sp 2 3

2p 7 2p 2p sp 2 6 2p 2p 3 sp 2 6 2p sp 2

sp 2 6 2p sp 2 sp 2 sp 2 2p 2p

sp 2 1s sp 2 sp 2 2p p sp 2 p sp 2 sp 2 p sp 2 l 3p 2 = 2 = 2 =

2p sp 2p 2p 2p sp 2p sp 2p 2p 2p 2p 2p 2 sp 2

sp sp 2p 2p sp 2p 2p 6 sp sp sp 2p 2p 2p 2p

l 1s 2p 3p 4p sp 2 p sp 3 p p sp 3 sp 3 sp 3 sp 3 sp 3 sp 3 sp 3 sp 3 r sp 2 sp 2 p sp 2 sp 2 p sp 2 sp

sp2 hbridiation p p p p sp 2 T 1 T 2 T 3 T s 1 = (1/3) 1/2 s + (4/6) 1/2 p T 2 = (1/3) 1/2 s - (1/6) 1/2 p + (1/2) 1/2 p T 2 tomic rbital T 3 = (1/3) 1/2 s - (1/6) 1/2 p - (1/2) 1/2 p sp3 hbridiation T 2 T 3 p sp 2 motif T 1 p p p sp 3 T 1 T 1 t 1 t 2 t 3 t 4 T 3 trigonal planar s tomic rbital t 4 t 3 t 1 t2 tetrahedral t 1 = 1/2(s + p + p + p ) t 2 = 1/2(s + p - p - p ) t 3 = 1/2(s - p + p - p ) t 4 = 1/2(s - p - p + p ) p p p sp hbridiation p p p p s tomic rbital D 1 D 2 D 1 D 1 = (1/2) 1/2 (s + p ) D 2 = (1/2) 1/2 (s - p ) sp D 2 D 1 D 2 p sp motif p D 1 linear

2 sp ds, dp linear 3 sp 2 trigonal planar (e3) S 4 3d sp 3 d 3d from 4 4 sp 3 tetrahedral 5 sp 3 d dsp 3 trigonal bipramidal 5 sp 2 d 2 d 2 sp 2 square pramidal 6 sp 3 d 2 d 2 sp 3 octahedral 6 spd 4 d 4 sp trigonal prism 7 sp 3 d 3 d 3 sp 3, d 5 sp pentagonal bipramidal hpervalent nd compounds np np ns 3p 3p sp 3p 3 d 3s S tomic rbital S (e4) r 5 4d 4d sp 3 d 2 from 5 4p 4p 4p sp 3 d 2 ns tpical elements (n-1)d transition-metal elements r 4s tomic rbital r (e1) 3 from 3 (e2) 2 from 2 (e5) l 3 3d 3d 2p 2p 2p 2p 2p 2p sp 3 d from 3 t 1 t 2 t 3 t 4 t 1 t 2 t 3 t 4 sp 3 sp 3 3p 3p 3p sp 3 d tomic rbital tomic rbital l 3s l tomic rbital

l sp 3 hbridiation from 3 p p p s tomic rbital sp 3 sp 3 sp 3 n 3p 3p 3p l 3s 3 3 3 3 = 1 3 3 l = 1 l (

sp 2 hbridiation p p p s tomic rbital from 2 p sp 2 p sp 2 π π p sp 2 p sp 2 π n π 2p 2p 2p n 2 2 2 2 = 2 +π bonding 2 2 = 2 +π bonding ()

sp hbridiation from p p p π p p p p p π p p p s tomic rbital sp sp π sp sp π (+ ) n 2p 2p 2p = 3 +2π bonding = 3 +2π bonding ()

Γ() E 3 v 3 0 1 χ'(r) a(irr) = (1/h) Σ χ(r)χ'(r) R Γ() R a( 1 ) = (1/6)(13+210+311) = 1 a( 2 ) = (1/6)(13+210+3(-1)1) = 0 a(e) = (1/6)(23+2(-1)0+301) = 1 Γ() = 1 + E D h

2 p p p 1 p

3c,2e Interaction (three center-two electron interaction) D h 2v 3v (D 3h ) Energ n 2 b 1 e 1s 2 1 D h n + + + 180 ~100 60 Walsh Diagram 2v 2 b 1 1 3v (D 3h ) 180 ~100 θ (--) 60 e p 2 n 1s

D3h 2 ' Energ 2 ' 2e' 2a 2 " 2e' 2p (e') 2p (e') 1e" e" a 2 " 2a 2 " π 2p (a 2 ") 1a 2 " e' 1e" n lone pair stabilied ( ') 1e' ' 1e' 1a 2 " π 1 ' 1 ' The p orbitals are drawn with. The three sets of lone pairs of p orbitals are omitted for clarit.

from 2 1.77Å 1.33Å 1.19Å b 2g b 1u D 2h a g * b 3g * b 2g b 1u b 3u sp 3 sp 3 sp 3 b 3u a g 1s () 3c,2e Interaction a g b 3u a g b 3u a g

2v 3 D h 2 g Energ 2b 2 2 u 1s 2 b 2 1b 1 2 2p (b 1 ) 2p (b 2 ) 2p ( ) 1s 2 1π u 2p (b 1 ) 2p ( ) 2p (b 2 ) 1b 2 1 u 1 1 g Walsh Diagram Energ 2 3a g 1 2 u 2b 2 1b 1 2 1π u 1b 2 1 u Estimate structures of 2 -,2, 2, 2, e 2 structures on the basis of the Walsh diagram. 1 1 g 2 (105 ), 2 (103 ), 2 (136 ) 2 (131 ), e 2 (180 ) 104.5 θ 180

3v D3h Energ 3 2e 2 ' 2e' e 2p (e) 2p (e) 2p (e') 2p (e') a 2 " e' 1s 3 2 2p ( ) 2p (a 2 ") ' 1e ( ) ( ') 1e' 1 3 Walsh Diagram 2 ' 1 ' 2e' 2e Energ 2 1e 1 1a 2 " 1e' 1 ' Estimate structures of 3 +,3, 3, 3 +, 3 structures on the basis of the Walsh diagram.

D h 2v 4 2v Energ 2 g 2 u b 2 4 2b 2 2b 2 4 2b 2 3 1π u b 1 3 1b 1 1s 3 n 1b 1 n b 2 1b 1 2 p p p b 2 b 1 b 2 2 1 u 1b 2 2a 1 1b 2 s 1 g 1 1b 2 1 1 87.5 1.698Å 1.598Å l EX) 1) 1s orbitals can be replaced b p orbitals. 2) Think about the structure of l3 on the basis of M diagrams as well as VSEPR rule. 3) Think about the electron deficient bonds involved in l 3 and the potential d orbital effects.

Td tetrahedral D4h square planar 2 2g Energ t 2 e u 2e u 2t 2 e u t 2 2p 2p 2p b 1g 1b 1g 2p e u 2p 1s 4 1t 2 t 2 1s 4 g 1a 2u 2p a 2u 1e u g b 1g 1 g 1g E) Estimate structures of 3 +,3, 3, 3 +, 3 structures on the basis of the Walsh diagram.

2v 2v 4 2v Energ 3 4 2b 1 2b 1 4 2b 1 2b 2 b 2 2b 2 2b 2 2b 2 1s 1b 1 2 b 1 3 2 b 1 n 3 b 2 b 1 3 b 2 p a b 1 1 p b 2 a p 1 b 1 2 b 2 1b 2 2 1b 2 1b 2 1b 1 1b 1 s 1 1 1b 2 1.646Å 101 S 187 1.545Å EX) 1b 1 1 1) 1s orbitals can be replaced b p orbitals. 2) Think about the structure of S4 on the basis of M diagrams as well as VSEPR rule. 3) Think about the electron deficient bonds involved in S 4 and the potential d orbital effects. 1

D4h square planar 4v square pramidap 4 4v square pramidap Energ 2g e 4 2e 2e e 4 2e 2e u 3 3 e 3 1b 1g 1a 2u b 1 1b 1 1s a 1 2 2 1b 1 b 1 b 1 1b 1 2 p p p e 1e u e 1e 1e 1e s 1 Γ = 2 + b 1 + e 1 1g 1 1.68Å 84 r 1.75~1.82Å EX) 1) 1s orbitals can be replaced b p orbitals. 2) Think about the structure of r5 on the basis of M diagrams as well as VSEPR rule. 3) Think about the electron deficient bonds involved in r 5 and the potential d orbital effects.

without d orbitals h with d orbitals h 2e g 1t 2g e g t 2g d 2 d 2-2 d d d Energ e g 2g 2t 1u 2g 2t 1u ver small contribution! t 1u e g 1e g n e g n 1e g t 1u t 1u 1e g g p p p t 1u g p p p t 1u g 1t 1u 1t 1u s g s g 1g 1g EX) 1) 1s orbitals can be replaced b p orbitals. 2) Think about the structure of S6 on the basis of M diagrams as well as VSEPR rule. 3) Think about the potential d orbital effects.

Energ D h 2p π 2p u 2p + u + g 3u 3g 2e 1u 1e 1g 1e 1u 2u 2g 1u 1g π g π u u + g + π g π u + u + g M's 3u 3g 2u 2g 1u 1g 2e 1u 1e 1g 1e 1u π n π n n 2p π 2p u sp + u sp + g D h 3u 3g 2e 1u 1e 1g 1e 1u π g π u + u + g u + g + 2u 2g 1u u + 1g g +

Energ 2p 2p b 2 2p b 1 2v 5 4b 2 2b 1 1a 2 3 1b 1 2b 2 4 3b 2 2 1b 2 1 a 2 b 1 b 2 b 2 b 2 a 2 b 1 b 2 b 2 5 4 2 n n 3 M's 4b 2 2b 2 3b 2 n n 2b 1 1a 2 1b 1 π π n n 1b 1a 2 1

Energ 2v 5 a1 M's 5 Energ 2v 4b 2 b2 M's 2p n 4 4 n 2p n 3b 2 4b 2 n n 3 3a n 1 b 2 2b 2 b 2 b 2 3b 2 2 n 1 2 n 1b 2 b 2 2b 2 n Energ a2 b1 n 1 π 1b 1 2v π 1b 2 n 1a 2 b 1 a 2 2p b 1 2b 1 1a 2 n π 1b 1 π 1b 1