.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

Similar documents
mugensho.dvi

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

pdf

A

応力とひずみ.ppt


II 2 II

i 18 2H 2 + O 2 2H 2 + ( ) 3K

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

DVIOUT

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

x ( ) x dx = ax

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

v er.1/ c /(21)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

2011de.dvi

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =


x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

( ) ( )

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

i

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

Ł\”ƒ-2005

入試の軌跡

第90回日本感染症学会学術講演会抄録(I)

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2


2014 S hara/lectures/lectures-j.html r 1 S phone: ,

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9


n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

( ) Loewner SLE 13 February

I 1


Fubini

phs.dvi

Morse ( ) 2014

1 c Koichi Suga, ISBN

Part () () Γ Part ,

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

untitled

1

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2


i

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2

Note.tex 2008/09/19( )

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

1

untitled

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Acrobat Distiller, Job 128

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

nakata/nakata.html p.1/20



) Binary Cubic Forms / 25

Chap9.dvi

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

73


x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

6.1 (P (P (P (P (P (P (, P (, P.101

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

Transcription:

.1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x, y) = z 0 (x, y) ( ) y = f(x, y) x-y 1. z = e x +xy y.1 z = x +y z = 1 z = f(x, y) 4 1 19

.1 z = e x +xy y 1 0.8 0.6 z 0.4 0. 0 1 0 y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, 0, 0) (1, 0, ) (0, 1, 1) n f(x 1, x,..., x n ) n x 1, x,..., x n n n 3 () 3 n (hyperplane) a 1, a,..., a n, b a 1 x 1 + a x + + a n x n = b (.) 0

. z = e x +xy y 1.5 1 0.5 y 0 0.5 1 1.5 1.5 1 0.5 0 0.5 1 1.5 x 1 1 f(x) df(x) dx = lim f(x + h) f(x) h 0 h f(x, y) (x 0, y 0 ) (λ, µ) t f(x, y) g(t) g(t) f(x 0 + λt, y 0 + µt) g(t) t = 0 g(0 + h) g(0) f(x 0 + λh, y 0 + µh) f(x 0, y 0 ) lim = lim h 0 h h 0 h f(x, y) (x 0, y 0 ) (λ, µ) (x 0, y 0 ) (λ, µ) ( ).1 f(x, y) = x + y (, ) (1, 1) ( + h) + ( + h) ( + ) h + 8h lim = lim h 0 h h 0 h = lim h + 8 = 8 h 0..1 (1, 1) (1, 1) 1

(1, 0) (x 0, y 0 ) f(x 0 + h, y 0 ) f(x 0, y 0 ) lim h 0 h f(x, y) (x 0, y 0 ) x x f(x, y) x f(x, y) x z = f(x, y) x f(x, y) x z f(x, y) x x f x (x, y) (0, 1) y.1 F K F L Y K F K(K, L) Y L F L(K, L).3 f(x, y) = x y f(x, y) x y.3 f x = 4xy f y = x i) x + 3y + 4 ii) (x + y) 3 iii) e x +xy+y iv) x y

1 n 1 f(x) x = x 0 f(x 0 + h) f(x 0 ) lim = c h 0 h c f (x 0 ) = c 9 h 0 o(h) h o(h) f(x 0 + h) f(x 0 ) ch (.3) 0 c f(x) x = x 0 f(x) = f(x 0 ) + f (x 0 )(x x 0 ) + 1 f (x 0 )(x 0 x) + x = x 0 + h f(x 0 + h) = f(x 0 ) + f (x 0 )h + 1 f (x 0 )h + (.3) o(h) h h 0 o(h) h 0 f(x, y) (x 0, y 0 ) (u, v) a = (h, k) o(h, k) o(h, k) f(x 0 + h, y 0 + k) f(x 0, y 0 ) (uh + vk) (.4) o(h, k) a 0 0 a a = h + k f(x 0 + h, y 0 + k) f(x 0, y 0 ) (uh + vk) lim = 0 (.5) a 0 a a = (h, k) k = 0 ( u = f x (x 0, y 0 ) f ) x (x 0, y 0 ) v = f y (x 0, y 0 ) ( f ) y (x 0, y 0 ) 3

f(x, y) (x 0, y 0 ) (x 0, y 0 ) f(x, y) z = f(x, y) (x 0, y 0 ) z = ux + vy + α = f x (x 0, y 0 )x + f y (x 0, y 0 )y + α α = f(x 0, y 0 ) f x (x 0, y 0 )x 0 f y (x 0, y 0 )y 0 (.6) (.6) z = f(x, y) (x 0, y 0 ).4 f(x, y) = 0.5x + y 1 (, 1) f x (, 1) = 0.5 f y (1, 1) = 1 (.6) α = 1 0.5 1 1 = 1 z = 0.5x + y 1.5 f(x, y) = 1 8 x + 1 y z = f(x, y) (, 1) f x (, 1) = 1 8 = 0.5 f y (, 1) = 1 1 = 1 α = 1 8 + 1 1 0.5 1 1 = 1 z = 0.5x + y 1.4.5 (1, 1).1 f(x, y) i) (λ, µ) f(x, y) (λ, µ) ii) f(x, y) x y f(x 0 + λh, y 0 + µh) f(x 0, y 0 ) lim = λu + µv h 0 h u = x f(x 0, y 0 ) v = y f(x 0, y 0 ) 4

.3 z y 1 x z y 1 x 5

.1 f(x, y) x y.6 f(x, y) = { xy, x +y (x, y) (0, 0) 0, (x, y) = (0, 0) f(x, 0) = 0 f(x, y) x 0 f x (x, 0) = 0 f y (0, y) = 0 f x (0, 0) = f y (0, 0) = 0 (0, 0) (λ, µ) ( ) λµh f(0 + λh, 0 + µh) f(0, 0) h = 1 h (λ + µ f(0, 0) )h λµ = 1 h (λ + µ ) λ µ 0 h 0 h = x k = y f = f(x 0 + h, y 0 + k) f(x 0, y 0 ) (.4) f = u x + v y + o(h, k) = f x (x 0, y 0 ) x + f y (x 0, y 0 ) y + o(h, k) (.7) (.7) x x y y f f x y 1 a = (h, k) a 0 o(h,k) a 0 df = f x (x 0, y 0 )dx + f y (x 0, y 0 )dy (x 0, y 0 ) f.7.1 df = f x (x, y)dx + f y (x, y)dy (.8) Y K = 1 3 K 3 L 3 dy = 1 3 K 3 L 3 dk + 3 K 1 3 L 1 3 dl Y L = 3 K 1 3 L 1 3 6

.5 1.4 c 1 c U(c 1, c ) = 1 γ cγ 1 + α 1 γ cγ f(x, y) x f(x,y) x x y f(x, y) x x f(x,y) f x xx f(x, y) x x ( ) f(x, y) f(x, y) x y f(x,y) x y ( ) f(x, y) f(x,y) y x f(x, y) x y y x x f yx, f(x,y) f y yy.8 f(x, y) = x e y 1 f(x, y) x = xe y f(x, y) y = x e y f(x, y) x = e y f(x, y) x y = xe y f(x, y) y = x e y f(x, y) = xe y y x f xy. f(x, y) f(x,y) y f(x,y) x y f(x,y) x y f(x,y) y x f(x, y) y x = f(x, y) x y..6 f(x, y) = x 4 y 3 + xy f xy = f yx.7 f(x, y) = x e x y 7

n f(x 1, x,..., x n ) (.9) (a 1, a,..., a n ) x i lim h 0 f(a 1, a,..., a i + h,..., a n ) f(a 1, a,..., a i,..., a n ), i = 1,..., n (.9) h y = f(x 1,..., x n ) x i f(x 1,..., x n ) x i, x i f(x 1,..., x n ), y x i, f xi (x 1,..., x n ), f i (x 1,..., x n ), (.10) y = f(x 1, x,..., x n ) (a 1, a,..., a n ) y = f 1 (a 1,..., a n )x 1 + f (a 1,..., a n )x + + f n (a 1,..., a n )x n + c c = f(a 1,..., a n ) f 1 (a 1,..., a n )a 1 f (a 1,..., a n )a f n (a 1,..., a n )a n (.11) f j (a 1,..., a n ) = f x j (a 1,..., a n ) df = f 1 (x 1,..., x n )dx 1 + f (x 1,..., x n )dx + + f n (x 1,..., x n )dx n (.1) f(x 1,..., x n ) x i x j i j f(x 1,..., x n ) ( ) f(x1,..., x n ) x i x j x j x i i = j f(x 1,..., x n ) x i f xi x j k k f(x 1,...,x n) x k 1 1 xk xk n n ( ) f(x1,..., x n ) x i x i k 1 + k + + k n = k.8 f(x, y, z) = x + xy + xz + yz 8

. z x y z = f(x, y) x y t x = g(t) y = h(t) z t f(x, y) g(t) h(t) t f(g(t), h(t)) t dz dt = f dg x dt + f dh y dt (.13).9 z = x + xy y = e x dz dx z x y = e x z = x + xe x dz dx = x + e x + ( 1)xe x = x + ( x + 1)e x f(x, y) = x + xy, h(x) = e x dz dx = f x + f dh y dx = x + y + x( e x ) = x + ( x + 1)e x.10 G 1 G p 1 p G 1 p 1 p I c(p 1, p, I) I M(p 1, p, u) p 1 h(p 1, p, u) = c ( p 1, p, M(p 1, p, u) ) h(p 1, p, u) p 1 h p 1 h p 1 = c p 1 + c I M p 1.9 f(x, y) = (x 4 + x y + xy) 3 x = t + 1 y = t + 4 df dt 9

. K L F(K, L) F(K, L) = 5K 0.4 L 0.6 (.14) L L + L F(K + K, L + L) = F(K, L) K K L Y = F(K, L) K L dk dl dy = F K dk + F L dl dy = 0 dk dl = F L F K F K (K, L) = K 0.6 L 0.6, F L (K, L) = 3K 0.4 L 0.4 dk dl = F L(K, L) F K (K, L) = 1.5K L L ɛ K 1.5 K L ɛ x y f y = f(x) ( ) dy dx x y F(x, y) = 0 x + y 1 = 0 (.15) x + y e xy = 0 (.15') y = f(x) (.15) (.15') F(x, y) dy dx 30

.4 0.5 1 8 7 F(K,L)=10 6 5 K 4 3 F(K,L)=.5 1 F(K,L)=5 0 0 0. 0.4 0.6 0.8 1 1. 1.4 1.6 L.3 ( ) F(x, y) (x 0, y 0 ) F(x 0, y 0 ) = 0 F y (x 0, y 0 ) 0 x = x 0 i) F(x, f(x)) = 0 ii) y 0 = f(x 0 ) f(x) y = f(x) dy dx = F x(x, y) F y (x, y).11 F(x, y) = x + y e xy dy dx (1, 0) F(1, 0) = 0 F x (x, y) = 1 ye xy F y (x, y) = 1 xe xy dy yexy = 1 dx 1 xe xy 31

.10 F(x, y) = 3x + 4xy + y 9 F(x, y) = 0 y = f(x) dy dx.3 y = e x t + t 1 x t t f(x, y, t) t f(x, y, t) = 0 (x, y) x{y t.1 f(x, y, t) = x (t 1)x y+t t 0, 1,, 3, 4 f(x, y, t) = 0.5.5 x (t 1)x y + t = 0 16 14 1 10 y 8 t=4 6 t=3 4 t= t=1 0 t=0 1 0 1 3 4 5 6 x t C C 3

C C.6.6 x (t 1)x y + t = 0 C 14 1 10 8 6 y 4 0 C 1 0 1 3 4 5 6 x t t t (x(t), y(t)) (.16) t f(x(t), y(t), t) = 0 (.16) d dt f(x(t), y(t), t) = f x(x(t), y(t), t) dx(t) + f y (x(t), y(t), t) dy(t) + f t (x(t), y(t), t) (.17) dt dt (x(t), y(t)) C dy(t) dt / dx(t) dt dy dx = lim y x 0 x = lim y(t + t) y(t) t 0 x(t + t) x(t) y(t + t) y(t) t = lim t 0 t x(t + t) x(t) = dy(t) dt /dx(t) dt (.18) f(x, y, t) = 0 x y (x(t), y(t)) dy dx = f x(x(t), y(t), t) f y (x(t), y(t), t) (.19) 33

C C (.18) (.19) f x (x(t), y(t), t) dx(t) dt (.17) (.0) + f y (x(t), y(t), t) dy(t) dt (.16) (.1) = 0 (.0) f t (x(t), y(t), t) = 0 (.1).3 f(x, y, t) = e x t + t y (.16) (.1) e x(t) t + t y(t) 1 = 0 e x(t) t + 1 = 0 t y = x.7.11.6 C