[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

Similar documents
画像工学特論

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Microsoft Word - 信号処理3.doc

2

-- Blackman-Tukey FFT MEM Blackman-Tukey MEM MEM MEM MEM Singular Spectrum Analysis Multi-Taper Method (Matlab pmtm) 3... y(t) (Fourier transform) t=

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

QMI_09.dvi

QMI_10.dvi

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

7-12.dvi

power.tex

Gmech08.dvi

v_-3_+2_1.eps

main.dvi

body.dvi

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

数値計算:フーリエ変換

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

2011de.dvi

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

chap1.dvi

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

2 2 L 5 2. L L L L k.....

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π


phs.dvi

pdf

Gmech08.dvi

Korteweg-de Vries

sp3.dvi

Chap11.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

mugensho.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z


1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

Chap9.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

29

Note.tex 2008/09/19( )

高等学校学習指導要領

高等学校学習指導要領

keisoku01.dvi

: /5 ( ) gnuplot x i x[i] () x(t) =, π < t t, < t < π (2) cos (3) sin (4) Fourier Shigeki Sagayama, FourierTrans26nov.tex

1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2

Z: Q: R: C: sin 6 5 ζ a, b

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

DVIOUT

main.dvi

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

impulse_response.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

85 4

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

08-Note2-web

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

p03.dvi

数学演習:微分方程式

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

ARspec_decomp.dvi

Untitled

. (.8.). t + t m ü(t + t) + c u(t + t) + k u(t + t) = f(t + t) () m ü f. () c u k u t + t u Taylor t 3 u(t + t) = u(t) + t! u(t) + ( t)! = u(t) + t u(

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

曲面のパラメタ表示と接線ベクトル

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

untitled

meiji_resume_1.PDF

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

Transcription:

13/7/1 II ( / A: ) (1) 1 [] (, ) ( ) ( ) ( ) etc. etc. 1. 1

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a + ( a n cos nπt + b n sin nπt ) n=1 + + b n sin nπt + x(t) (Fourier series) a n, b n (1) a n = x(t) cos nπt dt (n =, 1,, ) () b n = x(t) sin nπt dt (n = 1,, ) (3) a n, b n

) π x(t) = { x(t + π) = x(t) 1 ( π < t < ) 1 ( < t < π) ) = π a = 1 π a n = 1 π b n = 1 π x(t)dt = 1 { ( 1)dx + π π π π { π = 1 π = 1 π π x(t) cos ntdt = 1 π π π ( 1) cos ntdt + π } dx = 1 ( π + π) = π π [ 1 ] n sin nt + 1 [ ] 1 π sin nt = (n ) π π n x(t) sin ntdt = 1 { ( 1) sin ntdt + π π π π [ ] 1 cos nt 1 [ ] 1 π cos nt = (1 cos nπ) n π π n nπ = nπ {1 ( 1)n } (n = 1,, ) } cos ntdt } sin ntdt (sin t + 13 sin 3t + 15 sin 5t + 17 sin 7t + ) x(t) = 4 π x(t). g( t) = g(t) g(t) h( t) = h(t) h(t) cos sin = = = g(t)dt = g(t)dt, h(t)dt = 3

(a) 4 π sin t, (b) 4 π sin t + 4 3π sin 3t, (c) 4 π sin t + 4 4 3π sin 3t + 5π sin 5t, (d) n 1. (1) x(t) = n= e ±iθ = cos θ ± i sin θ cos θ = 1 sin θ = 1 i (e iθ + e iθ) (e iθ e iθ) { A n e inπt/ + B n e inπt/ } (4) A n = a n ib n = 1 x(t)e inπt/ dt (5) B n = a n + ib n = 1 x(t)e inπt/ dt (6) n x(t) = C n e inπt/ (7) n= C n = 1 x(t)e inπt/ dt (8) (complex Fourier series) 4

[ /, /] /n (n = 1,, ) harmonic wave e inπt/ (= cos(nπt/ ) + i sin(nπt/ )) C n 1.3 f n = n/, f = 1/ (7) (8) { } 1 x (t) = x(t)e inπt/ dt e inπt/ n= = n= { x(t)e iπf nt dt } e iπf nt f x(t) = lim x (t) f x(t) = X(f) = X(f)e iπft df (9) x(t)e iπft dt (1) (Fourier integral) (Fourier transform) (9) (1) f ω = πf x(t) = X(ω)e iωt dω (11) X(ω) = 1 x(t)e iωt dt (1) π ( X(ω)/π X(ω) ) 5

t x, ω k f(x) = F (k)e ikx dk (13) F (k) = 1 f(x)e ikx dx (14) π 1/π ( ) ) x(t) ( ) ( a > ) { e at (t > ) x(t) = (t < ) ) X(f) = = [ x(t)e ift dt = e (a+if)t a + if ] = 1 a + if e at e ift dt 1.4 ( ) x(t) = X(f)e iπft df X(f) f e iπft X(f) (Energy Spectrum Density; ESD) f X(f) Φ(f) = X(f) (15) (Power Spectrum Density; PSD) ( /, /) X(f) 6

X(f) P (f) = lim X (f) X(f) X(f) X (f) = lim (16) x 1 = lim x (t)dt = P (f)df (17) f f + df x P (f)df (15) (16) P (f) P P(f) df df f 3 [].1 x(t) x(t) = x(t ± n ) (n =, 1,, ) n x(t) 7

x = x(t) y = x(t + τ) x(t) τ C(t, τ) = E[x(t)x(t + τ)] (18) (auto-correlation function) τ (lag) ( ) 1 E[f k (t)] = lim N N N f k (t) ( ) k=1 1 E[f k (t)] = lim f k (t)dt 1 C(τ) = x(t)x(t + τ) = lim x(t)x(t + τ)dt (19) C(τ) t τ. (1) (18) τ = τ 1 C( τ) = lim x(t)x(t τ)dt 1 τ = lim x(t 1 )x(t 1 + τ)dt 1 τ t 1 = t τ () τ = τ {x(t) ± x(t + τ)} C(τ) = C( τ) () 1 lim {x(t) ± x(t + τ)} dt 8

1 = lim x 1 (t)dt + lim x 1 (t + τ)dt ± lim x(t)x(t + τ)dt = C() ± C(τ) > C() > C(τ) (τ ) (1) (3) τ C(τ) (τ ) ().3 x(t) / < t < / x(t) = (t > / ) x(t) = X(ω) = 1 π X(ω)e iωt dω x(t)e iωt dt 1 C(τ) = lim x(t)x(t + τ)dt { 1 } = lim x(t) X(ω)e iω(t+τ) dω dt { 1 } = lim X(ω)e iωτ x(t)e iωt dt dω = { lim πx(ω)x } (ω) e iωτ dω (3) x(t)e iωt dt = x(t)e iωt dt = πx (ω) τ = C() = x { x πx(ω)x } (ω) = lim dω S(ω)dω (16) f ω, P S 9

S πx(ω)x (ω) π X(ω) S(ω) = lim = lim (4) x(t) X(ω) S(ω) () (3) C(τ) S(ω) C(τ) = S(ω)e iωτ dω (5) S(ω) = 1 C(τ)e iωτ dτ (6) π (Wiener-Khintchine) 3 (Wiener-Khintchine) ω > x = S(ω) G(ω) ( G(ω)dω = G(ω) = S(ω) ) S(ω)dω S(ω) : (two-sided spectrum) G(ω) : (one-sided spectrum) 1

[3] 3.1 (1) x(t) [-, ] x(t) (window function) W (t) { 1 ( t ) W (t) = ( t > ) W (boxcar fnction ) x(t) W (t)x(t) x(t) P (f) = (7) W (t)x(t)e iπft dt (8) W (t) x(t) F (x(t)) F (W (t)x(t)) = F (W (t)) F (x(t)) W (t) Q (f) = W (t)e iπft dt = [ e e iπft iπft dt = iπf ] = sin πf πf (9) ( (b)) Q(f) Q(f) = W (t) = W (t)e iπft dt (3) Q(f)e iπtf df (31) f = ( ) 11

W 1 1 Q 1 / Q / W 1 1-1 1 t/ (a) f (b) 4 (a) W, W 1, (b) Q, Q 1. W 1 = 1 t (3) W = 1 ( 1 + cos πt ) ( Hunning) (33) W 3 =.54 +.46 cos πt ( Humming) (34) ( ) sin πf Q 1 (f) = (35) πf Q (f) = 1 Q (f) + 1 4 ( {Q f + 1 ) ( + Q f 1 )} ( Q 3 (f) =.54Q (f) +.3 {Q f + 1 ) ( + Q f 1 )} (36) (37) W 3 W 1-1 1 t/ (a) 1 Q / Q /1.8 1 f (b). -.4 5 (a) W, W 3, (b) Q, Q 3. 1

() ( f S ) ( ) 6 t f N = 1 t = 1 f S (38) (Nyquist frequency) (= t = 1/f N ) ( ) t (aliasing) 7 13

x(t) t C(τ) τ = n t (n: ) P (f) P (f) = τ n= e iπfn τ C(n τ) (39) C(n τ) = 1 τ 1 τ e iπfn τ P (f)df (4) τ = t, f N = 1/ τ P (f) C(τ) = ( + = C(n τ) = 1 τ 1 τ = 1 τ 3 τ 1 τ 1 τ [ 1 + τ 1 τ + k= e iπfn τ P (f)df 3 τ 1 τ + ) e iπfn τ P (f)df e iπ( ( ) ] k k τ +f)n τ P τ + f df e iπfn τ [ k= e iπkn = 1 (41) (4) P (f) = k= P P ( ) ] k τ + f df (41) ( ) k τ + f = P (f) + P (f N f) + P (f N + f) + P (4f N f) + P (4f N + f) + (4) 14

C(τ) τ P (f) P (f) P (f) f N = 1/ t f > f N f < f N f f N P 8 f N (folding) (3) x(t) X(f) P (f) = lim X(f) x(t) X(f) = X R(f) + X I (f) ( X R X I X(f) ) x(t) X R (f) X I (f) ˆP (f) Gauss k = χ - (C.V.) C.V. = k = 1 1% ( ) ( ) ( ) 15

3. 1. Blackman-urkey 195 Wiener-Khinchine 1965 Cooley ukey FF( ). ( ) Cooley and ukey (1965) (FF=Fast Fourier ransform) (FF ) Wiener-Khinchine Blackman-urkey FF 3. MEM( ) Burg (1967) MEM 16