7_Conclusion

Size: px
Start display at page:

Download "7_Conclusion"

Transcription

1 Study of the dynamic model analysis of the human foot complex during gait and its applications Takamichi TAKASHIMA

2 ii

3 ( )= ()+ () Tt () = TFRF () t + TF () t I () θ t T t kθ t dθ t k d iii

4 iv

5 v

6 vi

7 vii

8 1

9 2

10 3

11 4

12 COW HORSE HUMAN DOG Fe:femar BARE T:tibia F:fibla Digitigrade type at running. :phalanx :calcaneus :metatarsal Plantigrade type at walking. Digitigrade type Ungurigrade type Plantigrade type Fig. 1-1 The skeletal structure of the human and animal leg, and change with locomotion type in human foot. (28) 5

13 6

14 Hip J. moment Thigh segment Fig. 1-2 The theoretical rigid link model for the human gait analysis methods. There are three segments, thigh, shank, and foot, and three joints, hip, knee, and ankle joint. Each segment has its own mass and moment of inertia. FRF Knee J. moment Shank segment Ankle J. moment Foot segment 7

15 Flexible Structure Rigid Structure STJ CCJ TNJ Early stance Terminal stance STJ CCJ TNJ TTJ Low arch High arch TTJ Fig. 1-3 The changes of the foot conditions, rigid and flexible structures during a gait cycle. 8

16 9

17 10

18 Fig. 1-4 The total design of this study. 11

19 12

20 13

21 14

22 Fig. 2-1 The procedure of X-ray Digital Fluorscopy and Image Intensifier. Table. 2-1 Specifications of DRF system. A/D Converter sampling Image memory speed matrix D/A Converter 8 bit 10 MHz max 7.5 frame/sec 1024 x 1034 dot 8 bit Fig. 2-2 The situation of sampling. 15

23 Fig. 2-3 Digital radiographic images of human foot during stance phase of the gait by 7.5 flames per second. 16

24 y origin 50mm 100mm x Fig. 2-4 Calibration of the x-y coordinate system using the 1mm diameter lead balls placed on the sampling plane. 17

25 M1: Metatarsal# CN: Cuneiforms NV: Navicular 8 7 TL: Talus CC: Calcaneus M5: Metatarsal#5 CB: Cuboid a. The template and reference points for identification of bone in the foot. Template TR y M1 CN NV CC o x b. digitizing method. Fig. 2-5 Digitization of the positions of each foot bone using template method at the each frame. 18

26 frame#01 y o x frame#02 y o x frame#03 y o x y o x frame#04 Fig. 2-6 Videofluoroscopic pictures and to provide the stic pictures of each bones from digityzing X-Y coordinate data. (Subject::TT, male, 45, bodyweight::67 kg, footsize:: 26.5 cm) 19

27 frame#05 y o x frame#06 y o x frame#07 y o x frame#08 y o x 20

28 deg. 10 M1 - CC angle (6 trials) deg. 10 frame M1 - CC angle (Means + SD. of 6 trials) frame -2 Fig. 2-7 Medial arch transformation angle were approximated by CC-M1,M2 motions. 21

29 deg. deg TL - NV angle TL - CC angle deg. deg NV - CL angle CN - M1 angle Fig. 2-8 The results of angle changes of each major joints of foot during a stance phase. 22

30 deg. CC - CB angle deg. 10 CB - M5 angle Fig. 2-9 Lateral arch angle transformations were approximated by CC-M5 motion. 23

31 O ( ) + ( ) = ( ) + ( ) x x y y x x y y 2 P1 0 P1 0 P2 0 P ( Q1 0) + ( Q1 0) = ( Q2 0) + Q2 0 x x y y x x y y ( ) Q2 (x Q2, y Q2) y O (x 0, y 0) P2 (x P1, y P1) P P1 (x P2, y P2) Q o x a. Q1 (x Q1, y Q1) O b. Fig Instant centers determination method. 24

32 Instant Center of P:7 Q:9 Navicular y o x 1 st metarsal navicular Instant Center of P:5 Q:6 Talus talus 1 st metarsal Instant Center of P:3 Q:4 Calcaneus 1 st metarsal calcaneus Fig This picture shows the instant centers of motion between calcaneus and fixed 1 st metatarsal, and layers the ragiographic image of the foot for the references. 25

33 26

34 27

35 28

36 29

37 z (y2, z2) t2 (ym, zm) m, I (f2, n2) t1 T+ (f1, n1) y Hip J. moment Thigh segment m (y1, z1) m x = f f m m y = n n m g m f = f m x 2 1 n = n m( g+ y ) 2 1 I θ = t2 t1+ n1( x1 xm)+ f1( ym y1) n2( xm x2) f2( y2 ym) t = t + I 2 1 θ n( x xm) f ym y + n 2 ( xm x 2 )+ f 2 ( y 2 ym) ( ) Knee J. moment Ankle J. moment Shank segment FRF Foot segment Fig. 3-1 Freebody dyagram of the rigid link using the Newton-Euler dynamics method. The joint moment T2 was solved by inverse dynamics algorism. Fig. 3-2 The theoretical rigid link model for the human gait analysis methods. 30

38 m i g my 1 m1 = f1 f12 m ( z + g)= n n 1 m I θ = T + T + T 1 1 ARC FRF1 F12 T ARC 31

39 θ + T N + z FRF2 (f2, n2) y FRF1 (f1, n1) (yn, zn) (y2, z2) m2, I2 (ym2, zm2) F1 (f1, n1) m1, I1 (ym1, zm1) (y1, z1) Fig. 3-3 The simple foot model in sagital plane. 32

40 Position Data Force 600 The simple foot model Force Plate 1 Force Plate 2 Mass & Moment of inertia Fig. 3-4 The diagram of this study. Using the simple model of foot. 33

41 Table 3-1. The weight of foot segment. Ig I MglT 2π 2 = ( ) = + I I Ml o 2 o g 2 34

42 a. the plaster model of the foot was sepalated. b. each point of mass c. swing test tool Fig. 3-5 Plaster model of the two foot parts. There are hanging at voluntary points for estimate the moment of inertia. Table 3-2 Pertial foot segmental mass and moment of inertia. mass moment of inertia m i [kg] I i [kgm 2 ] Fore Foot (i=1) BW* Hind Foot (i=2) BW* * BW: BodyWeight [kg] Reflective marker Hind Foot Fore Foot Force Platform 1 Force Platform 2 Fig. 3-6 Schematic illustration of the center of mass about the hindfoot and the forefoot segment, and relationship between the markers. 35

43 specification samplig rate: 60Hz CCD cameras: 12 Force Platforms: Fig. 3-7 The VICON 512 System using 8 force plates and 12 CCD-camera. infrared light grass beads lens marker skin surface Fig. 3-8 Video Tracking system to recognize the infrared markers. Fig. 3-9 The method of 3D Video Tracking system to recognize the infrared markers using the DLT (Direct Linear Transformation) method. 36

44 l 37

45 Fig Picture of the subject foot with infrared rays reflective markers. 38

46 n s f Force Vertical Antero-Posterior Medio-Lateral Floor Reaction Force Specification of Force Platform KISTLER 9281C Range : kN (Fx,Fy) kN (Fz) Linearity : <+0.5 %FSO Hysteresis: < 0.5 %FSO Fig The floor reaction force vector. The force platform is able to measure the floor reaction forces, there are separated three direction forces, vertical compornent, antero-posterior compornent, and medio-lateral compornent. 39

47 l l1 f1 l2 f2 Fl = f l + f l F = f + f 1 2 Fig Calcuration method of the center of pressure at the force platform. 40

48 FRF 2 FRF 1 NV point Force Platform Fig The foot in midstance, placed the center of two force plates. (N) [cm] Force Plate 1 Force Plate 2 (a) Check system NV point at midstance after sampling. 0 gait cycle(100%) (b) Floor reaction force patterns of each segment. Fig The forefoot and hindfoot forces measurement system. (N) Fig General floor reaction force paterns of normal gait. 41

49 42

50 43

51 [ ] = [ ] ( ) M M C x y z G G m Cm, 0 Cm, Cm [M ] G [M ] G0 C x, y, z = [ ] m Cm Cm Cm T θ = CmNV M1NV cos 1 CmNV M1NV 44

52 z' x' z Cm x plantar coordinate system y' global coordinate system y Fig The plantar coordinate system was cariculated by coordinate transformation method from the global coordinate system. Arch Morment [Nm] dash::2d solid::3d Fig Comparative data of the angular change of foot arch, compare the global coordinate system and the plantar coordinate system. 45

53 46

54 subject-a male 22, BW=64.5kgf means of 6 trials. subject-b male 23, BW=68kgf means of 7 trials. subject-c female 32, BW=48.3kgf means of 9 trials Arch Falling heel contact Arch Elevation stance phase toe off heel contact stance phase toe off heel contact stance phase toe off gait cycle gait cycle gait cycle Fig The determinant arch angle and moment in sagittal plane motion about 3 subjects Moment [Nm] Angle [deg.] 47

55 Fig Check of the movement between skin and bones. Five lead balls on the calcaneus, navicular, and 1 st metatarsal head were digitizesed. The effect of distances between each ball were almost similar. deg 10 Mi-Nv- Cl angle stance phase [60Hz] a. Arch angle from VICON data deg 10 calca-meta angle stance phase [8Hz] metatarsal 1 calcaneus b. Arch angle from videofluoroscopic data Fig This picture shows measured arch angles about two method, (a) 3D Video tracking method, and (b) videofluoroscopic analysis. The determined angle patterns by both method were similarly. 48

56 49

57 50

58 51

59 TCJ Talus Calcaneus STJ Navicular TNJ CNJ TMJ TCJ MPJ Tibia Fibula STJ TCJ: taroclural joint axis STJ: subtalar joint axis STJ TCJ Arch MPJ TNJ: taronavicular joint axis CNJ: cuneonavicular joint axis TMJ: tarsometatarsal joint axis MPJ: metatarsopharangeal joint axis Fig. 4-1 The anatomical mechanism of human foot complex. This picture shows the axis of taroclural joint(tcj), subtalar joint(stj), taronavicular joint(tnj), and cuneonavicular joint(cnj). TCJ Axis STJ Axis x z y Global coordinate [M] G STJ Axis m 2 Arch Axis m 1 MPJ Axis Fig. 4-2 Human foot model include TCJ, STJ, MPJ, and Arch in global coordinate system. 52

60 [M ] G Cmx Clx NVx L Tbx Cmy Cly NVy L Tb y Cmz Clz NVz L Tb z [M ] PL [M ] STJ [M ] TCJ [M ] MPJ [R ] 1 2 FRF i COP i F ij 53

61 PL [ M] = [ R] [ M] PL G G my 1 m1 = f1 f12 m1( zm 1+ g)= n1 n12 I θ = T + T + T 1 1 ARCH FRF1 F12 FRF1 (f1, n1) z T ARC θ ARC Cm NV M1 y F12 (f12, n12) m1, I1 (a) definition of TCJ angle and marker position. (b) definition of TCJ moment. Fig. 4-3 The arch model in plantar coordinate system. 54

62 Fig. 4-4 The anatomical axis of ankle joint. 55

63 [M] PL [M] TCJ f21,n21 FRF2 FRF2 TCJ [ M] = [ R] [ M] TCJ PL PL my 2 m 2 = f2 + f21 f23 m2( zm 2 + g)= n2+ n21 n23 I θ = T T + T + T T 2 2 ARCH TCJ FRF 2 F 21 F 23 Tb z Am θ TCJ T TCJ Dm F23 (f23, n23) m2, I2 y F21 (f21, n21) FRF2 (f2, n2) T ARC (a) definition of TCJ angle and marker position. (b) definition of TCJ moment. Fig. 4-5 The Taroclural joint(tcj) model in TCJ coordinate system. 56

64 z Am A θ STJ T STJ Cm Cl FRF2 (s2, n2) m4, 4 x FRF1 (s1, n1) F43 (s43, n43) (a) definition of STJ angle and marker position. (b) definition of STJ moment. Fig. 4-6 The Subtalar joint(stj) model in STJ coordinate system. 57

65 STJ [ M] = [ R] [ M] STJ G G mx 4 m = s1+ s2 s43 m4( zm + g)= n1+ n2 n43 I θ = T + T T + T 4 4 STJ FRF1 FRF 2 F 43 Fig. 4-7 The measurement system using the DIAGNOST 97 DXTV(PHILIPS). 58

66 Eversion Neutral Inversion marker deg deg bone deg deg Fig. 4-8 The ragiographic verification of the marker system corresponding to STJ axes. 59

67 case_1 (y case_2 (y mp mp > y1) TMPJ = 0 < y ) T = T 1 MPJ FRF1 T MPJ z FRF1 (f1, n1) Dm θ MPJ To y (a) definition of MPJ angle and marker position. (y1, z1) (b) definition of MPJ moment. Fig. 4-9 The MPJ model in plantar coordinate system. 60

68 I STJ TCJ MPJ STJ TCJ ARCH MPJ STJ Fig The marker system corresponding to anatomical axes. 61

69 P = ω T 62

70 P = ω T ARCH ARCH ARCH 10 Cm T ARC θ ARC M1 Arch power [W] Arch moment [Nm] Archangle [deg.] HC FF MS HO TO Fig The arch angle, moment, and power in a gait cycle. 63

71 T TCJ Am Dm Tb θ TCJ TCJ power [W] TCJ moment [Nm] TCJ angle [deg.] HC FF MS HO TO Fig The TCJ angle, moment, and power in a gait cycle. 64

72 Fig Motion of the tarocrural and subtalar joint(wright; 1964). 65

73 10 θ STJ Am Cm A Cl T STJ STJ power [W] STJ moment [Nm] STJ angle [deg.] HC FF MS HO TO Fig The STJ angle, moment, and power in a gait cycle. 66

74 angle [deg.] Fig Motion of the MP joint(fujita). Fig Windlass mechanism(hicks). 67

75 θ MPJ TMPJ MPJ power [W] MPJ moment [Nm] MPJ angle [deg.] HC FF MS HO TO Fig The MPJ angle, moment, and power in a gait cycle. 68

76 69

77 (1) Arch angle and moment Arch Angle [deg] Arch Moment [%] (2) TCJ angle and moment TCJ Angle [deg] TCJ Moment [%] (3) STJ angle and moment STJ Angle [deg] STJ Moment [%] (4) MPJ angle and moment MPJ Angle [deg] stance phase swing phase Gait Time [%] MPJ Moment [%] stance phase swing phase Gait Time [%] Fig Results from 5 normal subjects during normal gait cycle. It s means of seven samplings. (1) Arch angle and moment, (2)TCJ angle and moment, (3)STJ angle and moment, and (4)MPJ angle and moment. Moment datas were standardyzed by body weight and foot length. 70

78 71

79 Cm Dm NV θ MPJ θ ARC To M1 Arch Angle [deg.] MPJ Angle [deg.] a. Experimentation data of the MPJ angle. Windlass effect: x [mm] b. Calucuration of the windrass effect by the model simulation. c. Experimentation data of the Arch angle. Fig Graphical simulation of the windlass effect (1991) 72

80 EHL / EDL TA TA FHL PL FDL PB TP EHL/EDL TS TA Arch Moment + FHL FDL TP TS STJ Moment+ Muscles EHL EDL TCJ Moment PL PB + TCJ Moment TS FDL FHL TP STJ Moment PL / PB TA :Tibialis Anterior TP :Tibialis Posterior EHL :Extensor Hallucis Longus FHL :Flexor Hallucis Longus EDL :Extensor Digitorum Longus FDL :Flexor Digitorum Longus TS :Triceps Sulae PL/PB:Peroneus Longus/ Brevis reverse stance phase swing phase Fig Muscle activities effect to the TCJ and STJ moment 73

81 74

82 75

83 76

84 Foot Motion during Gait DLT Method Motion Capture Foot Segment Parameter Mass Position Arch Angle Floor Reaction Forces In Chapter 4. Foot Model Newton-Euler s Equation Experimental Arch Moment Theoretical Arch Moment T * () t = k θ () t + d ( θ t ) Newton-Euler s Equation Experimental Arch Moment Arch Angle Least Square Method 4 Phase of a Gait Cycle I II III IV k 1 k 2 k 3 k 4 elasticity d 1 d 2 d 3 d 4 viscosity Discussion of Functional Change of the Foot Support Mechanism Fig. 5-1 Experimental arch moment was determined from anthropometric sampling data of the foot during gait, which was fitted to theoretical arch moment using the Least Square Method. k: elasticity and d: viscosity in each phase of a gait cycle were recognized in this study. 77

85 TP PL PB FDL FHL Ext.M (k M1 ) TC TA TA: tibialis anterior TP: tibialis posterior PL: peroneus longus PB: peroneus brevis FDL: extensor digitorum longus FHL: extensor hallucis longus TN CN MT Lig (k L ) Int.M (k M2 ) MP PF (k PF ) (a) The arch support mechanisms are consist of any ligamentous stabirities(lig), extrinsic muscles(ext.m), intrinsic muscles(int.m), and plantar fascia(pf). k d θ m (b) The simple foot arch model including torsional spring-damper in the arch joint. Fig. 5-2 (a) The arch support elements, and (b) the foot model simplify the human foot highly complex. my m = f1 fa mz ( m + g)= n1 n I θ = T + T + T FRF a Fa 78

86 T * T * () t = k θ () t + d ( θ t ) n J = { T( t) k θ ( t) d ( θ t )} 2 t= 1 J k = 0 J d = 0 79

87 I III I II III IV IIIII III III k 3 IIIII k 1 <k 2 <k 3 k 3 k 3 k 3 80

88 Phase I Phase II Fig. 5-3 The biomechanical function of the foot is changing during gait. Phase I : Weight acceptance phase; Heel contact to foot flat. Phase II : All plantar contact phase; foot flat to heel off. Phase III: Push-Off phase; heel off to toe off. FRF Vertical [N] HC FF HOTO HC phase I II III IV Fig. 5-4 The floor reaction forces about hind foot and fore foot part. Two platform data identified heel contact(hc), foot flat(ff), heel off(ho), toe off(to), and HC in the next gait cycle. Accordingly phase I to IV was decided. Arch Moment [Nm] anti-gravity phase line :: experimentation dot :: simulation phase I II III IV k k k k d d d d Fig. 5-5 The elasticity: ki and viscosity:di in each phase are recognized by the least squre method. This picture shows a sample of subject A. 81

89 d [Nm/rad 2 ] * * * * * * k k [Nm/rad] k 2 k d 2 d Fig. 5-6 The experimental arch moment(line) fitted to simulation arch moment(dot), and determinant elasticity: ki (**p<.01) and viscosity:di in each phase. 600 (**p<.01) 60 * * * * * * * * (**p<.01) elasticity k [Nm/rad] viscosity d [Nm/rad 2 ] k 1 k 2 k 3 d 1 d 2 d3-20 Subject: KN TM NK SF RN YN Fig. 5-7 The viscoelasticity about 6 subjects in anti-gravity phase (**p<.01). II k 3 d 2 k 3 82

90 II III 83

91 I III III I III III III 84

92 Fig. 5-8 The stress-strain rate of ligament(woo; 1982). 85

93 Moment [Nm] Angle [deg.] Fig. 5-9 The sampling situation of back pack loading gait. Fig The arch moment and arch angle assuming over load append to body weight. 86

94 Distance Cross section area of Plantar Ligaments Plantar Ligaments Fig The model with plantar ligaments, sectional datas were corected from CT Scan. Fig The shematic illustration of ligamentus arch support 87

95 Extrinsic M. Plantar Flexor 40 HO Dorsi Flexor Intrinsic M. Fig The shame shows the timing of muscle activities in the general gait pattern. Windlass effect Int. Muscles Ext. Muscles 14%[Kim:1995] [Basmajian: 1963] Ligaments [Woo, Allard, Kitaoka] Phase II Phase III Fig The shame shows the effects of stiffness of foot arch support. 88

96 II III I III II III III II III II III I IV III III II k 2 k L k M ex III k 3 k L k M ex k M in k PF 89

97 k L k M ex k M in k PF III k 3 II III k 3 k 2 k 3 k 2 k phase II k 2 [Nm/rad] phase III k 3 [Nm/rad] 100 morning evening 100 morning evening Subject: KN TM NK SF RN YN Fig The contrast between morning and evening foot. 90

98 91 III k 3

99 92

100 93

101 94

102 a. normal foot. structure. b. flat foot. structure. c.reconstruction of the foot arch. a. normal foot b. without calcaneum pronation. c. with calcaneum pronation. d. the arch support Fig. 6-1 The normal and flat foot structure and the concept of orthotic treatment. Fig. 6-2 The grade of flat foot deformities with and without calcaneum pronation. 95

103 96

104 Nm Arch Moment %Gait deg Arch Angle %Gait Fig. 6-3 The arch moment and angles in barefoot compared with arch support intact. 97

105 98

106 TA muscle (a) At the early stanse. internal moment external moment FRF human foot heel cushion and shock absorption FRF prosthetic foot CALF muscle (b) At the terminal stanse push off toe spring FRF FRF human foot prosthetic foot Fig. 6-4 The functional schematic illustration in a; early stanse, and b; terminal stanse in the human foot versus prosthetic foot. 99

107 Fig. 6-5 The trajectry of center of gravity in the transverse plane and center of pressure in the plantar surface. 100

108 deg 10 Subject_A deg 10 Subject_D 0 100% of stance 0 100% of stance deg 10 Subject_B deg 10 Subject_E 0 100% of stance 0 100% of stance deg 10 Subject_C deg 10 Subject_F 0 100% of stance 0 100% of stance Fig. 6-6 The deformation of medial and lateral arch about 6 subject. Medial arch angle Lateral arch angle 101

109 Fig. 6-7 At the case of long stump below knee amputation. 102

110 stress (kgf) 0 50 lateral medial strain (mm) Fig. 6-8 The design of the keel in the new concept of outside rigid structure and the stiffness curve of the medial and lateral keel.. load cell:a&d LC lasor displacement meter:keyence LB-01 X-Yrecorder:GRAPHTECH WX4421 Fig. 6-9 The keel measurement system. 103

111 Fig The trial prosthesis and situation of sampling systems, the center of gravity of the trank to assumes the center point of both acromion and greater trochanters. conventional foot prototype foot Fig The center of pressure pattern of the conventional foot(left) and new concept prototype prosthetic foot(right). 104

112 [m] JF 03 conventional foot [m] NN [m] prototype foot [m] Fig COG trajectory of the conventional foot and new concept prototype prosthetic foot. subject A male 22 60kg, 165cm subject B male 24 61kg, 173cm subject C male 24 64kg, 170cm Conventional Foot Prototype Foot ** (p<.01) * (p<.05) ** (p<.01) mm Fig Comparison of COG sway between conventional foot and new prottype foot in three subjects. 105

113 106

114 107

115 T * () t = k θ () t + d ( θ t ) 108

116 109

117 110

118 111

119 j1 j8 j7 j5 j3 j2 hind foot mid foot fore foot j8 j7 j5 j3 j4 j2 hind foot mid foot fore foot j8 j7 j5 j3 j4 j2 j1 medial view over view lateral view Talus Calcaneus j1 Taroclural Joint [TCJ] Navicular Cuboid j2 Sabtalar Joint [STJ] Medial Cuneiform j3talonavicular joint [TN] Intermediate Cuneiform Lateral Cuneiform j4 calcaneocuboid joint [CC] 1st. Metatarsal 2nd. Metatarsal j5 cuneonavicular [CN] 3rd. Metatarsal 4th. Metatarsal j6 intertarsal joint 5th. Metatarsal Sesamoid Proximal Phalanx j7 tarsometatarsal joint Middle Phalanx Distal Phalanx j8 metatarsophalangeal joint [MPJ] Fig. A1-1 The skeletal structure and anatomical joints of the human foot. It s consist of 28 bones and over fifty joints in perticulary, but in this paper aimed at 16 bones and 8 joints. 112

120 subtalar joint axes in horizontal plane 23 (4~47 ) tarocrural joint axes in horizontal plane subtalar joint axes in sagittal plane 42 (20.5~68.5 ) tarocrural joint axes in frontal plane 82 (74~94 ) a. The anatomical axis of tarocrural joint and subtalar joint. b. Motion of the dorsi flection and plantar flection in the tarocrural joint. c. Motion of the pronation and supination in the subtalar joint. Fig. A1-2 The ankle joint is consists of tarocrural joint and sabtalar joint, this picture shows the oblique axis of the tarocrural and subtalar joints and schematic illustration in each joint motion. 113

121 Lateral view Posterior view medial view tarus and calcaneus conection Fig. A1-3 The all joints in human body are constraint by the ligamentous linkage system. This picture shows the ligamentous construction mechanisms of the taloclural and subtalar joints. 114

122 EHL EDL Ankle Joint Axis PL PB TS Sabtalar Joint Axis TA FHL FDL TP TA :Tibialis Anterior FHL :Flexor Hallucis Longus FDL :Flexor Digitorum Longus TP :Tibialis Posterior TS :Triceps Sulae PL :Peroneus Longus PB :Peroneus Brevis EHL :Extensor Hallucis Longus EDL :Extensor Digitorum Longus Fig. A1-4 Function of muscle activities to talocrural and subtalar joint motion. There are extrinsic muscles of the foot, and each muscles effect of the each joints simultaniously. 115

123 116

124 Fig. A1-5 The ligamentous stability of midfoot poetion, it s to support the longitudinal foot arch. muscles TA :Tibialis Anterior FHL :Flexor Hallucis Longus FDL :Flexor Digitorum Longus TP :Tibialis Posterior PL :Peroneus Longus Abd H.:Abductor Hullux bones TAL :talus NV :navicular CC :calcaneus M1 :1 st metatarsal TAL FHL NV M1 CC TP FHL FDL FHL PL EHL TA Abd.H Fig. A1-6 The illustration shows the effect of musculer support in the human foot arch complex. 117

125 53.5 MP joint axis abduction - adduction flexion -extention Fig. A1-7 Joint axis of the metatarsophalangeal, (MP) joint, in the motion of abduction - adduction, and flexion -extension. 118

126 visual information vestibulo-equilibratory control RESPONSE COMMANDS INFORMATION golgi tendon organs plantar soft tissue Fig. A2-1 The feedback control system of the stability at standing posture. 119

127 acromion elector spine 1cm back of the hip joint gluteus maximus 1cm front of the knee joint soleus soleus front of the ankle joint a. The gravity line passes the 1cm back of the hip joint, 1cm front of the knee joint, and front of the ankle joint. Hip joint and Knee joint is stabled by ligamentous stability, but the ankle joint is necessary to act the soleus muscle. b. It is necessary to act the soleus muscle at the stability in standing posture. Fig. A2-2 The stability of standing posture. 120

128 Fig. A2-3 The weight distribution mechanism by talus bone and arch structure. 121

129 stride length stride width step length Left Stance 60% 20% double support Left Swing 40% Righit Stance single support Left Stance Heel Contact Foot Flat MidStance Heel Off Toe Off Acceration Mid Swing Deceleration Stance Phase Swing Phase Weight Acceptance Swing Limb Support Limb Advancement Initial Contact Loading Response Mid Stance Terminal Stance Pre Swing Initial Swing Mid Swing Terminal Swing Fig. A3-1 The terminology in a gait cycle. 122

130 123

131 124

132 Ankle joint motion PF.20' 10' 90' (0) DF.10' Plantar Flexion HC FF MS HO TO HC Dorsiflexion Ankle joint moment and FRF (BWLL) Planter Flexion Mom. FF MS HO TO Dorsiflexion Mom. % of Gait Cycle Muscle activities TA.Group H.C. M.S. T.O. H.C. Calf. Group H.C. M.S. T.O. H.C. Fig. A3-2 The ankle joint motion, moment, and muscle activities during the gait cycle. 125

133 Fig. A3-3 The trajectry of the center of gravity in a gait cycle. The trajectry describes the sinusoidal curve in horizontal and sagittal plane (32). 126

134 P 2πfT ρ 2 Pole zero 2πf c T ρ 1 Pole ρ 2 Pole Fig. A4-1 The singularity in the Z plane. Hz ()= 3 ( z + 1) gz ρ 2 z 2ρ zcos2πft ρ 2 1 ( 2 c 2 ) ( ) + g 8 = 1 ρ 1 2ρ cos2πft ρ 2 1 ( 2 c 2 ) ( ) + yn ( )= yn ( 1) ( ρ1+ 2ρ2cos2πfT c ) 2 yn 2 ρ 2ρρ cos2πft ( ) + ( ) ( c ) 2 + yn 3ρρ xn ( )+ 3xn ( 1)+ 3xn ( 2)+ xn 3 g { ( )} 127

135 i x = i u jy jv = jy jv cosφ = cosφ j k = j k cos( 90 o + φ) = sinφ y w y w y O j y R x = cosφ sinφ Fig. A5-1 A definition of the rotation angle. 0 sinφ cosφ x w u k w z i x = i u k z j v v R = z cosψ sinψ 0 sinψ cosψ cosθ 0 sinθ R = y sinθ 0 cosθ 128

136 T T [ R] [ xyz] = R R R [ xyz] G T x z y G cψ sψ 0 cθ 0 sθ = 0 cφ sφ sψ cψ T 0 [ xyz] 0 sφ cφ sθ 0 cθ cθ cψ sψ cψ sθ = sθ sφ+ cθ cφ sψ cφ cψ cθ sφ+ cφ sθ sψ [ xyz] T cψ sθ+ cθ sφ sψ cψ sφ cθ cφ+ sθ sφ sψ 129

137 subject KN TM NK SF RN YN sex / age f / 27 m / 30 f / 26 f / 23 f / 26 m / 30 foot length body weight foot angle stride stiffness (k3)

138 Sampling code::0806kn{a02, a03, a05, a06, a07, a11}aug Morning BodyWeight::61.8 kg Step Length = m Foot Angle = deg Elasticity Arch Elasticity Viscosity Arch Viscocity k-> d-> deg Arch Angle Nm Arch Moment W Arch Power deg TCJ Angle Nm TCJ Moment 100 W TCJ Power -100 deg 10 STJ Angle Nm 100 STJ Moment 100 W STJ Power deg MPJ Angle Nm -50 MPJ Moment W MPJ Power deg Lateral Arch Angle mm Arch Length 10 mm Ball Width

139 Sampling code::0806tm{a05, a06, a07, a08, a09, a10, a11, a12}aug Morning BodyWeight::69.2 kg Step Length = m Foot Angle = deg Elasticity Arch Elasticity Viscosity Arch Viscocity k-> d-> deg Arch Angle Nm Arch Moment W Arch Power deg TCJ Angle Nm TCJ Moment 100 W TCJ Power -100 deg 10 STJ Angle Nm 100 STJ Moment 100 W STJ Power deg MPJ Angle Nm -50 MPJ Moment W MPJ Power deg Lateral Arch Angle mm Arch Length 10 mm Ball Width

140 Sampling code::0806nk{a02, a06, a08, a11}aug Morning BodyWeight::43.7 kg Step Length = m Foot Angle = deg Elasticity Arch Elasticity Viscosity Arch Viscocity k-> d-> deg Arch Angle Nm Arch Moment W Arch Power deg TCJ Angle Nm TCJ Moment 100 W TCJ Power -100 deg 10 STJ Angle Nm 100 STJ Moment 100 W STJ Power deg MPJ Angle Nm -50 MPJ Moment W MPJ Power deg Lateral Arch Angle mm Arch Length 10 mm Ball Width

141 Sampling code::0730fj{a04, a05, a06, a07, a09}aug Morning BodyWeight::48.1 kg Step Length = m Foot Angle = deg Elasticity Arch Elasticity Viscosity Arch Viscocity k-> d-> deg Arch Angle Nm Arch Moment W Arch Power deg TCJ Angle Nm TCJ Moment 100 W TCJ Power -100 deg 10 STJ Angle Nm 100 STJ Moment 100 W STJ Power deg MPJ Angle Nm -50 MPJ Moment W MPJ Power deg Lateral Arch Angle mm Arch Length 10 mm Ball Width

142 Sampling code::0730nr{a03, a07, a09, a11}aug Morning BodyWeight::51.1 kg Step Length = m Foot Angle = deg Elasticity Arch Elasticity Viscosity Arch Viscocity k-> d-> deg Arch Angle Nm Arch Moment W Arch Power deg TCJ Angle Nm TCJ Moment 100 W TCJ Power -100 deg 10 STJ Angle Nm 100 STJ Moment 100 W STJ Power deg MPJ Angle Nm -50 MPJ Moment W MPJ Power deg Lateral Arch Angle mm Arch Length 10 mm Ball Width

143 Sampling code::0521nk{a19, a20, a21, a22, a23, a24, a25, a26, a27}mar Evening BodyWeight::82.4 kg Step Length = m Foot Angle = deg Elasticity Arch Elasticity Viscosity Arch Viscocity k-> d-> deg Arch Angle Nm Arch Moment W Arch Power deg TCJ Angle Nm TCJ Moment 100 W TCJ Power -100 deg 10 STJ Angle Nm 100 STJ Moment 100 W STJ Power deg MPJ Angle Nm -50 MPJ Moment W MPJ Power deg Lateral Arch Angle mm Arch Length 10 mm Ball Width

144 Fig. A7-1 The design of the new prosthetic foot by the concept of outside rigid structure. 137

145 138

146 139

147 140

148 141

149 142

150 143

151 144

152 145

153 146

154 Cpp X C, pp DR, (3), pp Wing Foot 4, pp Orthosis , pp

155 S, pp S, pp S, pp S, pp WBC S, pp WBC S, pp (2), pp.73

156 (6), pp Possibility of orthotic gait as a tool for locomotor training in patients with spinal cord injury: New Horizons putting the science into rehabilitation- Abstracts Spinal Injury : New Horizons putting the science into rehabilitation- H. Yano K. Nakazawa T. Kikuchi H. Seki (s), pp (2), pp (s), pp , 4., (2) (S), pp (1), pp

157 4., (7), pp (3), pp (1), pp (11), pp (2), pp (1), pp CAPOD (s), pp CAPOD CAD-CAM SYSTEM (s), pp (3), pp

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l A study on the simulation of the motion of personal full-submerged hydrofoil craft by Yutaka Terao, Member Summary A new energy utilization project developed by Tokai University was started in 1991. It

More information

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yuichiro KITAGAWA Department of Human and Mechanical

More information

( ) 2017 2 23 : 1998 1 23 ii All Rights Reserved (c) Yoichi OKABE 1998-present. ( ) ( ) Web iii iv ( ) (G) 1998 1 23 : 1998 12 30 : TeX 2007 1 27 : 2011 9 26 : 2012 4 15 : 2012 5 6 : 2015 4 25 : v 1 1

More information

建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/050043 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 1 38 2 15 2 1 2 2 1 2 2 1977 2007 2015 10 ii F P = mα g =

More information

frontal (coronal) plane transverse (horizontal) plane sagittal plane 2) 2. 6) Chopart/Lisfranc 3. frontal (coronal) plane frontal (coronal) plane ever

frontal (coronal) plane transverse (horizontal) plane sagittal plane 2) 2. 6) Chopart/Lisfranc 3. frontal (coronal) plane frontal (coronal) plane ever A. inversion eversion supination pronation 2 1),2) American Orthopaedic Foot and Ankle Society (AOFAS) 3) International Society of Biomechanics (ISB) 4) inversion eversion frontal (coronal) plane motion

More information

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a), Tetsuo SAWARAGI, and Yukio HORIGUCHI 1. Johansson

More information

技術研究報告第26号

技術研究報告第26号 1) 2) 3) 250Hz 500Hz RESEARCH ON THE PHYSICAL VOLUME OF THE DYNAMIC VIBRATION RESPONSE AND THE REDUCTION OF THE FLOOR IMPACT SOUND LEVEL IN FLOORS OF RESIDENTIAL HOUSING Hideo WATANABE *1 This study was

More information

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing The Hydrodynamic Force Acting on the Ship in a Following Sea (1 St Report) Summary by Yutaka Terao, Member Broaching phenomena are most likely to occur in a following sea to relative small and fast craft

More information

18 A Study on the Running and Jumping by a One-leg Robot ( )

18 A Study on the Running and Jumping by a One-leg Robot ( ) 18 A Study on the Running and Jumping by a One-leg Robot ( ) 109535 1...3 1.1...3 1....4 1.3...4...5.1...5....6 3...7 3.1 CAD...7 3.1.1...7 3.1.CAD...7 3.1.3...9 3.1.4...10 3.1.5... 11 3.1.6...1 3....1

More information

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive An Application of Multiple Induction Motor Control with a Single Inverter to an Unmanned Vehicle Propulsion Akira KUMAMOTO* and Yoshihisa HIRANE* This paper is concerned with a new scheme of independent

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

main.dvi

main.dvi A 1/4 1 1/ 1/1 1 9 6 (Vergence) (Convergence) (Divergence) ( ) ( ) 97 1) S. Fukushima, M. Takahashi, and H. Yoshikawa: A STUDY ON VR-BASED MUTUAL ADAPTIVE CAI SYSTEM FOR NUCLEAR POWER PLANT, Proc. of FIFTH

More information

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4) 3 * 35 (3), 7 Analysis of Local Magnetic Properties and Acoustic Noise in Three-Phase Stacked Transformer Core Model Masayoshi Ishida Kenichi Sadahiro Seiji Okabe 3.7 T 5 Hz..4 3 Synopsis: Methods of local

More information

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation

More information

平成14年度

平成14年度 14 Estimation of Ground Reaction Force and Joint Moment by Plantar Pressure Measurement Device 1055063 1. 1 1.1 1 1.2 1 1.3 2 1.4 2 1.4 a) 2 1.4 b) 3 1.5 3 1.6 3 2. 2.1 5 2.2 5 2.2.1 2.2.1.1 7 2.2.1.1.1

More information

Vol. No. Honda, et al.,

Vol. No. Honda, et al., A Study of Effects of Foot Bath before Exercise on Fall Prevention Yoko Honda Yoko Aso Aki Ibe Megumi Katayama Tomoko Tamaru Key Words fall prevention, foot bath, elderly, fall prevention programs Honda,

More information

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,

More information

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Shigeru Kitamura, Member Masaaki Sakuma Genya Aoki, Member

More information

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo 5D1 SY4/14/-485 214 SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomomichi SUGIHARA 2 1 School of Engineering, Osaka University 2-1

More information

Vol. 51 No (2000) Thermo-Physiological Responses of the Foot under C Thermal Conditions Fusako IWASAKI, Yuri NANAMEKI,* Tomoko KOSHIB

Vol. 51 No (2000) Thermo-Physiological Responses of the Foot under C Thermal Conditions Fusako IWASAKI, Yuri NANAMEKI,* Tomoko KOSHIB Vol. 51 No. 7 587-593 (2000) Thermo-Physiological Responses of the Foot under 22-34 C Thermal Conditions Fusako IWASAKI, Yuri NANAMEKI,* Tomoko KOSHIBA and Teruko TAMURA * Junior College Division, Bunka

More information

SICE東北支部研究集会資料(2004年)

SICE東北支部研究集会資料(2004年) 219 (2004.11.05) 219-4 Development of a 3D Range Sensor Based on Equiphase Light-Section Method KUMAGAI Masaaki * *Tohoku Gakuin University : (Vision sensor), (3-D range sensor), (Light-section method),

More information

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Summary Previously, the authors developed the plastic

More information

06_学術_関節単純X線画像における_1c_梅木様.indd

06_学術_関節単純X線画像における_1c_梅木様.indd Arts and Sciences X The formulation of femoral heard measurement corrected enlargement ratio using hip joints X-ray Imaging 1 2 1 1 1 2 Key words: Bipolar Hip Arthroplasty (BHA) Preoperative planning Enlargement

More information

mm mm PC PC Epson Endeavor NT mm288 mm 30 mm 3 I II4 1FQR 5 mm II Tab. 1 Characteristics of participants. 2 Fig. 2 Adj

mm mm PC PC Epson Endeavor NT mm288 mm 30 mm 3 I II4 1FQR 5 mm II Tab. 1 Characteristics of participants. 2 Fig. 2 Adj ContributionOffice Chair Design for Notebook PC Work, by Hiroyuki ISHIKURA & Nobutoshi YAMAZAKI. Desk sharing in offices has become recently a trend due to the wide spread use of notebook computers. However,

More information

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came 3DCG 1,a) 2 2 2 2 3 On rigid body animation taking into account the 3D computer graphics camera viewpoint Abstract: In using computer graphics for making games or motion pictures, physics simulation is

More information

0801391,繊維学会ファイバ12月号/報文-01-西川

0801391,繊維学会ファイバ12月号/報文-01-西川 Pattern Making Method and Evaluation by Dots of Monochrome Shigekazu Nishikawa 1,MarikoYoshizumi 1,andHajime Miyake 2 1 Miyagi University of Education, 149, Aramaki-aza-Aoba, Aoba-ku, Sendai-shi, Miyagi

More information

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake supplied to the engine, and as such are critical elements

More information

m BIG-MATHUGE- MAT 3 FDM3Zebris 4 HUGE-MAT bit 884 mm1156 mm Hz FDM3 3 2 BIG-MATHUGE- MAThttp://

m BIG-MATHUGE- MAT 3 FDM3Zebris 4 HUGE-MAT bit 884 mm1156 mm Hz FDM3 3 2 BIG-MATHUGE- MAThttp:// General remarks pecial Issues No.3Measurement Technique for Ergonomics, ection 1-3 Measurement of Body Motion Motion Measurement by using Force Censor, by 13 1 3 3 3 20148222014109 Faculty of cience and

More information

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth and Foot Breadth Akiko Yamamoto Fukuoka Women's University,

More information

2 94

2 94 32 2008 pp. 93 106 1 Received October 30, 2008 The purpose of this study is to examine the effects of aerobics training class on weight loss for female students in HOKURIKU UNIVERSITY. Seventy four female

More information

013858,繊維学会誌ファイバー1月/報文-02-古金谷

013858,繊維学会誌ファイバー1月/報文-02-古金谷 Development of Non-Contact Measuring Method for Final Twist Number of Double Ply Staple Yarn Keizo Koganeya 1, Youichi Yukishita 1, Hirotaka Fujisaki 1, Yasunori Jintoku 2, Hironori Okuno 2, and Motoharu

More information

14 2 5

14 2 5 14 2 5 i ii Surface Reconstruction from Point Cloud of Human Body in Arbitrary Postures Isao MORO Abstract We propose a method for surface reconstruction from point cloud of human body in arbitrary postures.

More information

07_学術.indd

07_学術.indd Arts and Sciences computed radiography CRpresampled MTF Measurement of presampled MTFs with computed radiography (CR) by contrast method using smoothed square-wave. 1 16813 1, 2 1 1 1 2 Key words: contrast

More information

.I.v e pmd

.I.v e pmd Structural Design for Curved Panels by Laminated Composite Materials (Identification of Lamination Parameters Using Modal Testing Method ) Tetsuya NARISAWA, Shohei IWATA Abstract - Using a modal testing

More information

日立金属技報 Vol.34

日立金属技報 Vol.34 Influence of Misorientation Angle between Adjacent Grains on Magnetization Reversal in Nd-Fe-B Sintered Magnet Tomohito Maki Rintaro Ishii Mitsutoshi Natsumeda Takeshi Nishiuchi Ryo Uchikoshi Masaaki Takezawa

More information

Postoperative Assessment by Using a Torque Machine (BIODEX) and MRIs in Patients treated for a Recurrent Anterior Dislocation or Subluxation of the Sh

Postoperative Assessment by Using a Torque Machine (BIODEX) and MRIs in Patients treated for a Recurrent Anterior Dislocation or Subluxation of the Sh Postoperative Assessment by Using a Torque Machine (BIODEX) and MRIs in Patients treated for a Recurrent Anterior Dislocation or Subluxation of the Shoulder by HATA Yukihiko MURAKAMI Narumichi Department

More information

untitled

untitled 2M5-24 SM311 SM332 3 4 e30mm 5 e30mm [2M5-24] 0-5 -10-15 -20-150-125-100-75-50 -25 0 25 50 75 100 125 150 0-5 -10-15 -20-150-125-100-75-50 -25 0 25 50 75 100 125 150 0-5 -10-15 -20-150-125-100-75-50 -25

More information

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t Review of Seatbelt Anchorage and Dimensions of Test Bench Seat Cushion JASIC Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test

More information

Title 外傷性脊髄損傷患者の泌尿器科学的研究第 3 報 : 上部尿路のレ線学的研究並びに腎機能について Author(s) 伊藤, 順勉 Citation 泌尿器科紀要 (1965), 11(4): Issue Date URL

Title 外傷性脊髄損傷患者の泌尿器科学的研究第 3 報 : 上部尿路のレ線学的研究並びに腎機能について Author(s) 伊藤, 順勉 Citation 泌尿器科紀要 (1965), 11(4): Issue Date URL Title 外傷性脊髄損傷患者の泌尿器科学的研究第 3 報 : 上部尿路のレ線学的研究並びに腎機能について Author(s) 伊藤, 順勉 Citation 泌尿器科紀要 (1965), 11(4): 278-291 Issue Date 1965-04 URL http://hdl.handle.net/2433/112732 Right Type Departmental Bulletin Paper

More information

189 2015 1 80

189 2015 1 80 189 2015 1 A Design and Implementation of the Digital Annotation Basis on an Image Resource for a Touch Operation TSUDA Mitsuhiro 79 189 2015 1 80 81 189 2015 1 82 83 189 2015 1 84 85 189 2015 1 86 87

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

2001 Received November 28, 2014 Current status and long-term changes of the physique and physical fitness of female university students Shiho Hiraku Y

2001 Received November 28, 2014 Current status and long-term changes of the physique and physical fitness of female university students Shiho Hiraku Y 2001 Received November 28, 2014 Current status and long-term changes of the physique and physical fitness of female university students Shiho Hiraku Yoshie Soga and Yuki Nakamura Abstract Understanding

More information

24 Depth scaling of binocular stereopsis by observer s own movements

24 Depth scaling of binocular stereopsis by observer s own movements 24 Depth scaling of binocular stereopsis by observer s own movements 1130313 2013 3 1 3D 3D 3D 2 2 i Abstract Depth scaling of binocular stereopsis by observer s own movements It will become more usual

More information

Title 成人日本人坐骨神経の Funicular Pattern Author(s) 漆谷, 英礼 Citation 日本外科宝函 (1974), 43(4): Issue Date URL

Title 成人日本人坐骨神経の Funicular Pattern Author(s) 漆谷, 英礼 Citation 日本外科宝函 (1974), 43(4): Issue Date URL Title 成人日本人坐骨神経の Funicular Pattern Author(s) 漆谷, 英礼 Citation 日本外科宝函 (1974), 43(4): 254-275 Issue Date 1974-07-01 URL http://hdl.handle.net/2433/208023 Right Type Departmental Bulletin Paper Textversion

More information

ON STRENGTH AND DEFORMATION OF REINFORCED CONCRETE SHEAR WALLS By Shigeru Mochizuki Concrete Journal, Vol. 18, No. 4, April 1980, pp. 1 `13 Synopsis A

ON STRENGTH AND DEFORMATION OF REINFORCED CONCRETE SHEAR WALLS By Shigeru Mochizuki Concrete Journal, Vol. 18, No. 4, April 1980, pp. 1 `13 Synopsis A ON STRENGTH AND DEFORMATION OF REINFORCED CONCRETE SHEAR WALLS By Shigeru Mochizuki Concrete Journal, Vol. 18, No. 4, April 1980, pp. 1 `13 Synopsis After Tokachioki Earthquake of 1968, the importance

More information

1..FEM FEM 3. 4.

1..FEM FEM 3. 4. 008 stress behavior at the joint of stringer to cross beam of the steel railway bridge 1115117 1..FEM FEM 3. 4. ABSTRACT 1. BackgroundPurpose The occurrence of fatigue crack is reported in the joint of

More information

(1 ) (2 ) Table 1. Details of each bar group sheared simultaneously (major shearing unit). 208

(1 ) (2 ) Table 1. Details of each bar group sheared simultaneously (major shearing unit). 208 2463 UDC 621.771.251.09 : 621.791.94: 669.012.5 Improvement in Cold Shear Yield of Bar Mill by Computer Control System Koji INAZAKI, Takashi WASEDA, Michiaki TAKAHASHI, and Toshihiro OKA Synopsis: The

More information

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo IIC--7 Precise Positioning Control of High-order Pitching Mode for High-Precision Stage Yushi Seki, Hiroshi Fujimoto (The University of Tokyo), Hideaki Nishino, Kazuaki Saiki (Nikon) Abstract Precision

More information

K02LE indd

K02LE indd I Linear Stage Table of Contents 1. Features... 1 2. Description of part Number... 1 3. Maximum Speed Limit... 2 4. Specifications... 3 5. Accuracy Grade... 4 6. Motor and Motor Adaptor Flange... 4 6-1

More information

COP (1 COP 2 3 (2 COP ± ±7.4cm 62.9±8.9kg 7m 3 Fig cm ±0cm -13cm Fig. 1 Gait condition

COP (1 COP 2 3 (2 COP ± ±7.4cm 62.9±8.9kg 7m 3 Fig cm ±0cm -13cm Fig. 1 Gait condition A method for evaluating the effects of leg motion on center of foot pressure during walking 06M40191 Hiroki WATANABE COP : Center Of Pressure COP COP 11 +13cm 0cm -13cm 7m 44 9 2 3 COP COM COM : Center

More information

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i 25 Estimation scheme of indoor positioning using difference of times which chirp signals arrive 114348 214 3 6 , (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,,

More information

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ 51 206 51 63 2007 GIS 51 1 60 52 2 60 1 52 3 61 2 52 61 3 58 61 4 58 Summary 63 60 20022005 2004 40km 7,10025 2002 2005 19 3 19 GIS 2005GIS 2006 2002 2004 GIS 52 2062007 1 2004 GIS Fig.1 GIS ESRIArcView

More information

AFO AFO 4 2.3AFO 5 3 AFO 3.1 AFO

AFO AFO 4 2.3AFO 5 3 AFO 3.1 AFO 17 1060126 1 1 2 2 AFO 2.1 3 2.2AFO 4 2.3AFO 5 3 AFO 3.1 AFO 6 3.2 6 3.3 7 3.4 8 3.5 9 4.1 14 4.2 17 4.3 18 4.4 18 5.1 19 5.2 19 5.3 19 5.4 21 6.1 22 23 24 1 1 (Ankle-foot orthosis AFO) 1) AFO(Fig.1) AFO

More information

untitled

untitled 1 2 3 4 5 130mm 32mm UV-irradiation UV-cationic cure UV-cationic cure UV-cationic cure Thermal cationic Reaction heat cure Thermal cationic Cation Reaction heat cure Cation (a) UV-curing of

More information

6) , 3) L60m h=4m 4m φ19 SS400 σ y = kn/mm 2 E = 205.8kN/mm 2 Table1 4) 7 Fig.1 5 7) S S 2 5 (Fig.2 ) ( No.1, No.2, No.3, No.4)

6) , 3) L60m h=4m 4m φ19 SS400 σ y = kn/mm 2 E = 205.8kN/mm 2 Table1 4) 7 Fig.1 5 7) S S 2 5 (Fig.2 ) ( No.1, No.2, No.3, No.4) Damages and Earthquake Resistant Performance of Steel Frame Structures with Self Strain Stress (Faculty of Architecture and Structural Engineering) Yutaka NIHO, Masaru TERAOKA (Professor Emeritus of KNCT)

More information

17_19

17_19 19 横傾斜状態で航行する船の流体力微係数と操縦性 * 正会員 安 川宏紀 正会員 平 田法隆 * Maneuverability and Hydrodynamic Derivatives of Ships Traveling in Heeled Condition by Hironori Yasukawa, Member Noritaka Hirata, Member Summary Oblique

More information

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Institute of Colloid and Interface Science, Science University

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

Table 2 Cases of Nail Deformity Associated with upward Distortion of Distal Soft Tissue No. Age Sex Affected RegionsDuration Results M Both grea

Table 2 Cases of Nail Deformity Associated with upward Distortion of Distal Soft Tissue No. Age Sex Affected RegionsDuration Results M Both grea Table 2 Cases of Nail Deformity Associated with upward Distortion of Distal Soft Tissue No. Age Sex Affected RegionsDuration Results 1. 49 M Both great toes 2 years Cured after 4 months 2. 11 F Both great

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

mt_4.dvi

mt_4.dvi ( ) 2006 1 PI 1 1 1.1................................. 1 1.2................................... 1 2 2 2.1...................................... 2 2.1.1.......................... 2 2.1.2..............................

More information

25 Removal of the fricative sounds that occur in the electronic stethoscope

25 Removal of the fricative sounds that occur in the electronic stethoscope 25 Removal of the fricative sounds that occur in the electronic stethoscope 1140311 2014 3 7 ,.,.,.,.,.,.,.,,.,.,.,.,,. i Abstract Removal of the fricative sounds that occur in the electronic stethoscope

More information

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato

More information

特-3.indd

特-3.indd Development of Automation Technology for Precision Finishing Works Employing a Robot Arm There is demand for the automation of finishing processes that require technical skills in the manufacturing of

More information

SICE東北支部研究集会資料(2012年)

SICE東北支部研究集会資料(2012年) 77 (..3) 77- A study on disturbance compensation control of a wheeled inverted pendulum robot during arm manipulation using Extended State Observer Luis Canete Takuma Sato, Kenta Nagano,Luis Canete,Takayuki

More information

System to Diagnosis Concrete Deterioration with Spectroscopic Analysis IHI IHI IHI The most popular method for inspecting concrete structures for dete

System to Diagnosis Concrete Deterioration with Spectroscopic Analysis IHI IHI IHI The most popular method for inspecting concrete structures for dete System to Diagnosis Concrete Deterioration with Spectroscopic Analysis IHI IHI IHI The most popular method for inspecting concrete structures for deterioration ( for example, due to chloride attack ) is

More information

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CHIBA Department of Mechanical Engineering, Tokyo University

More information

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science, Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science, Bunka Women's University, Shibuya-ku, Tokyo 151-8523

More information

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test (J. Soc. Mat. Sci., Japan), Vol. 52, No. 11, pp. 1351-1356, Nov. 2003 Fatigue Life Prediction of Coiled Tubing by Takanori KATO*, Miyuki YAMAMOTO*, Isao SAWAGUCHI** and Tetsuo YONEZAWA*** Coiled tubings,

More information

1 2 3

1 2 3 INFORMATION FOR THE USER DRILL SELECTION CHART CARBIDE DRILLS NEXUS DRILLS DIAMOND DRILLS VP-GOLD DRILLS TDXL DRILLS EX-GOLD DRILLS V-GOLD DRILLS STEEL FRAME DRILLS HARD DRILLS V-SELECT DRILLS SPECIAL

More information

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015)

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015) 65 62015 224 228 ** Journal of The Japan Institute of Light Metals, Vol. 65, No. 6 (2015), 224 228 2015 The Japan Institute of Light Metals Investigation of heat flow behavior on die-casting core pin with

More information

Farrow and Abernethy, ; Jackson and Mogan, 7 Abernethy, 199; Kellman and Garrigan, 9 Masters, iemgmax 3 Ⅱ c

Farrow and Abernethy, ; Jackson and Mogan, 7 Abernethy, 199; Kellman and Garrigan, 9 Masters, iemgmax 3 Ⅱ c 193 1 1 Differences in the pattern of motion on upper limb when delivering smash, clear, and drop shots in badminton Yujiro Masu 1 Jyunya Komagata 1 and Kazuki Fujino Abstract This study examined differences

More information

土木学会構造工学論文集(2011.3)

土木学会構造工学論文集(2011.3) Vol.57A (11 3 ) RC Consecutve falling-weight impact test of large-scale RC girders under specified total input-impact energy * ** *** **** ***** Norimitsu Kishi, Hisashi Konno, Satoru Yamaguchi, Hiroshi

More information

浜松医科大学紀要

浜松医科大学紀要 On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse

More information

QUANTITATIVE ANALYSIS OF CHOLESTEATOMA USING HIGH RESOLUTION COMPUTED TOMOGRAPHY SHIGERU KIKUCHI, M. D. and TATSUYA YAMASOBA, M. D. Department of Otolaryngology, Kameda General Hospital, Kamogawa TOSHITAKA

More information

1

1 PalmGauss SC PGSC-5G Instruction Manual PalmGauss SC PGSC-5G Version 1.01 PalmGauss SC PGSC5G 1.... 3 2.... 3 3.... 3 3.1... 3 3.2... 3 3.3 PalmGauss... 4 3.4... 4 3.4.1 (Fig. 4)... 4 3.4.2 (Fig. 5)...

More information

橡

橡 CO2 Laser Treatment of Tinea Pedis Masahiro UEDA:,' Kiyotaka KITAMURA** and Yukihiro GOKOH*** Table I Specifications 1. Kind of Laser 2. Wavelength of Lasers. Power of Laser. Radiation Mode. Pulse Duration.

More information

96 ÿ Ø à¢ç]éëóø6.0

96 ÿ Ø à¢ç]éëóø6.0 1996/1/26 1988 MAX. SH 1 2 3 4 5 6 7 8 1 TA 400 200 A HIP 400 200 KNEE A MOMENT (N-m) -200 0 TO MOMENT (N-m) 0-200 TO -400 B -400 B 0.1.2 0.1.2 ANKLE 400 200 A MOMENT (N-m) -200-400 0 TO 0.1.2 TIME(sec)

More information

CHEMOTHERAPY APR Fig. 1 Chemical structure of cefotetan (CTT, YM09330)

CHEMOTHERAPY APR Fig. 1 Chemical structure of cefotetan (CTT, YM09330) CHEMOTHERAPY APR. 1982 Fig. 1 Chemical structure of cefotetan (CTT, YM09330) VOL.30 S-1 CHEMOTHERAPY Fig. 2 Comparison of standard curves of CTT on various test organisms by cylinder plate method Column

More information

5 11 3 1....1 2. 5...4 (1)...5...6...7...17...22 (2)...70...71...72...77...82 (3)...85...86...87...92...97 (4)...101...102...103...112...117 (5)...121...122...123...125...128 1. 10 Web Web WG 5 4 5 ²

More information

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6) 1 2 1 3 Experimental Evaluation of Convenient Strain Measurement Using a Magnet for Digital Public Art Junghyun Kim, 1 Makoto Iida, 2 Takeshi Naemura 1 and Hiroyuki Ota 3 We present a basic technology

More information

電子部品はんだ接合部の熱疲労寿命解析

電子部品はんだ接合部の熱疲労寿命解析 43 Evaluation for Thermal Fatigue Life of Solder Joints in Electronic Components Haruhiko Yamada, Kazuyoshi Ogawa 2 63Sn- 37Pb 95Pb-5Sn Si Cu Si 63Sn-37Pb Since automotive electronic components are used

More information

Longitudinal Cannon-Bone Fracture and Su bchond ral Osteoscierosis in the Racehorse An Examination of the Cannon-Bones of Two Cases with the Fracture-

Longitudinal Cannon-Bone Fracture and Su bchond ral Osteoscierosis in the Racehorse An Examination of the Cannon-Bones of Two Cases with the Fracture- Longitudinal Cannon-Bone Fracture and Su bchond ral Osteoscierosis in the Racehorse An Examination of the Cannon-Bones of Two Cases with the Fracture- Mikihiro KANEKO,* Keiji KIRYU,* Masa-aki OIKAWA,*

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

cms.pdf

cms.pdf RoHS compliant INTERNAL STRUTURE FEATURES Part name over Slider Housing Slider contact Fixed contact Terminal pin lick spring Ground terminal Material Steel (SP), Tin-plated Polyamide opper alloy, Gold-plated

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

国土技術政策総合研究所 研究資料

国土技術政策総合研究所 研究資料 ISSN TECHNICAL NOTE of National Institute for Land and Infrastructure Management No256 September 2005 Experimental Study on Seismic Behavior of Seawalls for Controlled Waste Disposal Shingo KANO, Katsuya

More information

/ Motor Specifications Direct Motor Drive Ball Screws / Precision Ball Screw type MB / MB MB Precision Ball Screw type MB / MoBo C3 5 5 Features A 5-p

/ Motor Specifications Direct Motor Drive Ball Screws / Precision Ball Screw type MB / MB MB Precision Ball Screw type MB / MoBo C3 5 5 Features A 5-p / Motor Specifications MB Precision Ball Screw type MB / MoBo C3 5 5 Features A 5-pahse Stepping Motor is mounted directly onto the shaft end of a C3 grade precision Ball Screw, which is suitable for high

More information

藤村氏(論文1).indd

藤村氏(論文1).indd Nano-pattern profile control technology using reactive ion etching Megumi Fujimura, Yasuo Hosoda, Masahiro Katsumura, Masaki Kobayashi, Hiroaki Kitahara Kazunobu Hashimoto, Osamu Kasono, Tetsuya Iida,

More information

h23w1.dvi

h23w1.dvi 24 I 24 2 8 10:00 12:30 1),. Do not open this problem booklet until the start of the examination is announced. 2) 3.. Answer the following 3 problems. Use the designated answer sheet for each problem.

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

食品工学.indb

食品工学.indb , Vol. 11, No. 1, pp. 51-58, Mar. 2010 IH The Visualization and Quantification of the Flow in the Pan During Induction Heating and Gas Heating Haruna KAWAKAMI, Zensyu TOU, Mika FUKUOKA, and Noboru SAKAI

More information

QXD (Page 1)

QXD (Page 1) Journal of Ski Science --, Structure of Qualitative Development of Techniques and Division of the Skill Level in Giant Slalom of Alpine Skiing Competition Yuichiro KONDO Tadashi TAKEDA Joji KAWAGUCHI Abstract

More information

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2 JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* 1 1 1 1 210 Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb 2010 10 4 2010 12 10 1 2 * 237-0061 2-15 046-867-9794 ogurik@jamstec.go.jp 27 210

More information

untitled

untitled 1.0 1. Display Format 8*2 Character 2. Power Supply 3.3V 3. Overall Module Size 30.0mm(W) x 19.5mm(H) x max 5.5mm(D) 4. Viewing Aera(W*H) 27.0mm(W) x 10.5mm(H) 5. Dot Size (W*H) 0.45mm(W) x 0.50mm(H) 6.

More information

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

(MIRU2008) HOG Histograms of Oriented Gradients (HOG) (MIRU2008) 2008 7 HOG - - E-mail: katsu0920@me.cs.scitec.kobe-u.ac.jp, {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human

More information

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collapse and LBB behavior of statically indeterminate piping

More information

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun 10 1-14 2014 1 2 3 4 2 1 2 3 4 Web PubMed elbow pain baseball elbow little leaguer s elbow acupuncture electric acupuncture 2003 2012 10 39 32 Web PubMed Key words growth stage elbow pain baseball elbow

More information

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe

More information